Exploration for reservoir-quality subsurface rockbodies by mapping and interpretation of regional groundwater flow

Team: Looking at the Basin! <u>Ke-yu Zhao</u>, Hong Zhang China University of Geosciences (Beijing)

September 27, 2016

Outline

1. Introduction

2. Theoretical Investigation

3. Case study

4. Conclusion

Introduction

Regional groundwater flow system

(Toth, 1999)

Introduction

Exploration for reservoir-quality subsurface rock-bodies:

Differential entrapment;

Regional hydraulic trap;

Local hydraulic trap;

(Toth, 1988)

2 000 000 YEARS

25-29th September 2010

Montpellier,

OBLIM CONFERENCE CENTER

43rd

АΗ

congress

a capillary barrier

Grain-size difference between a sandstone lens and its surrounding shale matrix

Outline

1. Introduction

2. Theoretical Investigation

3. Case study

4. Conclusion

The definition of potentiometric anomalies

$$h = \frac{\Phi}{g} = z + \frac{p}{\rho g}$$

The absolute anomaly :

$$\Delta \Phi = \Phi_a - \Phi_o$$

where Φ_a is anomaly potential and Φ_o is the original potential

The limit anomaly :

$$\Delta \Phi_l = g \frac{L}{2} \frac{\partial h_o}{\partial x}$$

The effect of rock lens of relatively high permeability

Influencing factors of potentiometric anomalies

□Lens geometry

Anisotropy

DThe lens orientation

DSpacing and relative position of multiple lenses

Lens geometry (L/W)

• The areal extent and the intensity of perturbation increase with the declining L/W

AH

congress

Montpellier,

CORUM CONFERENCE CENTE

Anisotropy $(K_{h/v})$

The Lens Orientation

The areal extent and the intensity of perturbation decrease from increasing *α*.

Spacing and relative position of multiple lenses

DTwo identical lenses in tandem

Two identical lenses in parallel position, perfect overlap laterally

Two identical lenses in parallel position, partial overlap laterally

Summary

• The potentiometric anomaly is negative at the upstream end and positive at the downstream end of a highly permeable lens;

• The value of the anomaly increases with increases in permeability contrast, length, width, and L/W.

Outline

1. Introduction

2. Theoretical Investigation

3. Case study

4. Conclusion

Study Area

Keho Lake areas in southern Alberta. Canada

Stratigraphy & Rock Types

Study Area

LenticularGas and/or oil bearing

□ A good database

Dominantly lateral flow fluid

□ Sufficiently large hydraulic gradient

Target geological unit

 A local area of potentiometric perturbations was selected from a large map reduced from DST(drill-stem testing)measurement of formation pressures.

Selection of target anomalies

25-29th September 2016 Montpellier, France CORUM CONTERENCE CENTER CORUM CONTERENCE CENTER

Geological evaluation of chosen anomaly sites

Calculating the interval-permeability (DST and core analyses) The section of structure and interval permeability through lenses conforms the validity (A4 A1 A2)

Verification and refinement of the prediction by numerical modelling

Simulation Vs. Observation

Problem

1) Database

2) Formation-fluid types X More data

mapping and interpretation of regional groundwater flow

Conclusion

<u>Lens-induced perturbations</u> of the potentiometric surface is usefully employed in exploration, provided that a <u>sufficient database exists</u>.

Thank you for your attention!

