What is the influence of regional groundwater flow on the mechanical stress field, and thus the stability of hill sides? What groundwater-related surface-phenomena may indicate reduction in effective stresses of a slope?

Student Competition on Regional Groundwater Flow

Fekete Carmen, Király Zsófia Montpellier, 2016.09.26.

N°abstract

Table of content

- 1. Attributes of the hydraulic discharge
- 2. Types of the landslides
- 3. Mechanical background
- 4. The influence of the groundwater flow on the slope failure potential
- 5. Case Study Campo Vallemaggia, Switzerland

Hydraulic discharge of groundwater

(according to Tóth, 1971)

Primary attributes

- Positive gradient of the fluid potential
- Low relative topographic position

• Allochthonous water temperature

Hydrological effects of the regional gravity flow of groundwater (Toth, 1980)

Hydraulic discharge of groundwater

(according to Tóth, 1971)

Secondary attributes

- Springs
- Seepages
- Quicksands
- Soap holes
- Geysers
- Frost mounds
- Goundwater lakes, marshes
- Salt accumulations
- Landslides, slumping, soil creep and gullying

Types of mass wastings

- Slope movements of surface deposits
- Slides of solid rocks
- Specific types of slope movements

Reichard, 2011

The main reasons of the landslides

1. Increased pore pressure (reduction of the intergranular pressure)

2. Lubricating effect of water facilitating the displacement of rock particles relative to each other

Mechanical background I.

Pore pressure

• Effective normal stress

Effective stress = total stress – pore pressure

Mechanical background II.

Terzaghi's principle:

All measurable effects of a change of stress, such as compression, distortion and a change of shearing resistance are due exclusively to changes in effective stress.

http://environment.uwe.ac.uk/geocal/SoilMech/stresses/stresses.htm

<u>The influence of topographically</u> <u>controlled groundwater flow on the</u> <u>failure potential</u>

• Based on the study of Iverson and Reid (1992):

comprehensive mathematical model to calculate the changes in the effective stress distribution and failure potential induced by gravity-driven seepage forces in case of dry and saturated hillslopes

• In the study:

$$\frac{\partial}{\partial x}\left(K \ \frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K \ \frac{\partial h}{\partial y}\right) = 0$$

- Various slope profiles, material properties, hydraulic heterogeneities
- Do not assess failure surface locations or factor of safety
- 2D periodic, infinitesimal topography /the bottom boundary is located at a large depth (10x slope height)/
- Steady-state groundwater flow
- Porous medium that is hydraulically isotropic

Coulomb failure rule
[Lamb and Whitman 1979]:

• Coulomb failure potential:

$$\frac{\tau'_{max}}{-\sigma'_m} = \varphi$$

Material properties

congress

https://www.engineersedge.com/material_science/poissons_ratio_definition_equation_13159.htm

Slope inclination

Slope morphology

J. A. Coe, 2008:

https://www.researchgate.net/figure/228662529_fig5_Fig-5-Rock-fall-dry-ravel-and-channel-sediments-in-5th-order-main-channel-near-SM3

Landslide in Salvador, Brazil due to heavy rains

Landslide in humid regions: Toward concave or convex-concave forms

http://riotimesonline.com/brazil-news/tag/landslides/#

In Hungary:

http://index.hu/tudomany/kornyezet/2011/01/21/miert_indul_meg_a_loszfal/ http://index.hu/belfold/2010/06/16/megint_megmozdult_a_loszfal_dunaszekcson/

Slope heterogeneity

Normalized seepage vectors in vertical layer, 4 order magnitude lower/higher K

Summary of the Study

 Gravity-driven groundwater flow increases the failure potential in near-surface discharge areas where seepage forces are directed outward from the slope

- This may occur
 - near the toe of the slope
 - near a contrasting conductivity interface

• Influencing factors on the failure potential:

- Material properties /porosity, Poisson's ratio/
- Slope morphology and hydraulic heterogeneities have a much larger effect:

Modification of the seepage force field due to gravity-driven groundwater flow

Affect the magnitude and extension of the Coulomb failure potential

Change in the

effective stress

field

Case Study

Campo Vallemaggia (Alps, Switzerland)

http://www.vallemaggiasecrets.ch/images/slideshow/24_frana.jpg

Campo Vallemaggia

Investigations between 1983-1991

- Landslide geology, structure and geomorphology
- Geophysical surveys
- Borehole drilling
- Geodetic measurements
- Geotechnical explorations

3-D block model

2-D hydrodynamic flow model

Precipitation and landslide velocity

Stabilization of the deep-seated landslide

References

- Bonzanigo, L., Eberhardt, E., Loew, S. (2007): Long-term investigation of a deep-seated creeping landslide in crytalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. *Canadian Geotechnical Journal*, 44, pp. 1157-1180.
- Eberhardt, E., Bonzanigo, L., Loew, S. (2007):): Long-term investigation of a deep-seated creeping landslide in crytalline rock. Part II. Mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia. *Canadian Geotechnical Journal*, 44, pp. 1181-1199.
- Iverson, R. M., Reid, M. E. (1992) Gravity-driven groundwater flow and slope failure potential–1. Elastic effective-stress model. *Water Resources Research*, 28(3), pp. 925-938.
- Reichard, J. S. (2011): *Environmental Geology*. McGraw Hill, New York, Unites States of America
- Reid, M. E., Iverson, R. M. (1992). Gravity-driven groundwater flow and slope failure potential–2. Effects of slope morphology, material properties, and hydraulic heterogeneity. *Water Resources Research*, **28**(3):939-950.
- Tóth J. (1971). Groundwater discharge: A common generator of diverse geologic and morphologic phenomena. *International Association of Scientific Hydrology Bulletin*, **16**(1-3), pp. 7-24.
- Tóth, J. (1980): Cross-formational gravity-flow of groundwater: A mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration) – *in* Roberts, W.H., Cordell, R.J. (eds.) Problems of Petroleum Migration. AAPG Studies in Geology, no. 10, Tulsa, Oklahoma, USA, pp. 121-167.
- Zaruba Q, Mencl V (1969) *Landslides and their Control*. Czechoslovak Academy of Sciences and Elsevier, Amsterdam, The Netherlands.

Thank you for your kind attention!

