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- GR is a key process for water resources management

- Modelers need to know how robust their simulations are, because…

 the model structure,

 the uncertainty in the calibrated model parameters and

 the calibration period…might influence the predictions

 Uncertainty I: Model structure and complexity

 An implicit assumption is made that model parameters calibrated over historical
periods are also valid for the predictions

 Uncertainty II: Non-Stationarity of calibrated model parameters

 Operational testing is rarely done – especially for GR models, because measuring
GR is challenging

Groundwater Recharge (GR)
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Motivation
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Study Area

• Pre-alpine head watershed north-eastern Switzerland 

• Large free drainage weighting lysimeter (2.5 m deep, 2 

m diameter)  unique data set (~32 y TS)

• Surface is covered with grass

• Groundwater table depths shallow

• Average annual values:

Precipitation 1473 mm/a

Actual evapotranspiration     560 mm/a



o Identification of 

dissimilar 

calibration periods

o Constrained Monte 

Carlo Approach

o Simulations with 

optimal parameter 

sets 

o Evaluation of model 

robustness

Four Step Approach
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Methodology



i. Soil Water Balance Model (FINCH, 14 parameters):  

• Simple daily water balance equation

• Predominately linear relationships between model parameters and outputs

ii. Lumped Parameter Bucket Model (LUMPREM, 12 parameters):

• Matrix and macropore flow are activated after specified delay times

• Soil moisture content in the column controls the recharge rate

iii. Physically-based Model (HYDRUS 1D Homogenous, 16 parameters):

• Richards equation

• Van Genuchten parameterisation

• Homogenous assumption

iv. Physically-based Model (HYDRUS 1D Dual Porosity, 19 parameters):

• Porous medium is divided into two overlapping soil domains

Chosen Model Structures and Complexities + Degree-day snow model
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Models
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• The similarity between 

patterns is quantified by 

using their 

• Correlation

• Their centred root 

mean square 

differences 

• Amplitude of their 

variations, 

represented by their 

standard deviations

• Increasing model 

complexity; increasing 

number of acceptable 

parameter sets

• Model performance in 

calibration is quite similar 

under all calibration 

periods

Taylor Plot
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Results: Calibration



• Decreasing model 

performance

• The differences are a 

function of the chosen 

model complexity

• Uncertainty in model 

parameters is less 

pronounced than model 

structure

• Robustness of each 

individual model follows 

the degree of model 

complexity

Taylor Plot
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Results: Validation



o Period dry/dry: 
Poor model 
performance for 
all models

o Period wet/dry: 
Best model 
performance

o No optimal 
calibration 
period

o Model 
performance 
depends strongly 
on the model 
complexity and 
structure rather
than on the 
calibration 
period

Annual recharge patterns 
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Sensitivity of recharge to the climate characteristics of the 

calibration period
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Sensitivity of recharge to the climate characteristics of 

the calibration period



• Largest deviations for the drought 

years 2003, 2009 and 2011

• Differences are minor for observed 

volumes < 20 mm. 

• Drought deficit volumes increase 

with decreasing model complexity

• Dry-Dry calibration most efficient to 

simulate droughts

Drought deficit volumes 
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Impact on simulated 

recharge rates
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• Acceptable model performance during the calibration will not ensure reliable predictions under 

dissimilar conditions 

• BUT differences are a function of the chosen model complexity

• Model structure becomes more important under extremes or very contrasting climatic 

conditions 

• Uncertainty in model parameters is generally less pronounced than model structure

• Elaborate calibration procedure does not automatically provide robust model parameters 

and accurate predictions

• No optimal calibration period

• Model performance depends strongly on the model complexity and structure rather than 

on the calibration period

• Wet calibration period  appears detrimental to simulate dry validation periods

• Dry-Dry calibration most efficient to simulate droughts but for “average” or wet conditions 

the calibration period failed

• Calibration period is less important for the physically based models

Results should raise the concern of model reliability when using simple models for 

extreme events or under dissimilar climatic conditions
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Summary and Conclusions



Thank you for your 

attention
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Approach: 2 steps are required:

o Calibrate base model

o Null Space Monte Carlo Procedure
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Constrained Null Space Monte Carlo Simulation

Modified after Doherty,Hunt and Tokin 2010 USGS Scientific Report

1. Calibrate the model 2. Generate parameter set: C(p)

4. Project differences 

onto the null space

3. Take difference with calibrated model

5.Add to calibrated field 6.Adjust solution space components

7. Repeat…

Advantages:

o Many different realizations are possible

o Parameter flexibility (reduce structural noise)

o Using pre-calculated sensitivities reduce
computational effort

o SVD-Assist calibrate just the parameters in
the solution space



Approach: 

Two steps are required

Advantages:

• Many different realizations 

are possible

• Parameter flexibility 

(reduce structural noise)

• Using pre-calculated 

sensitivities reduce 

computational effort

• SVD-Assist calibrates just 

the parameters in the 

solution space
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Constrained Null Space Monte Carlo Simulation

Calibrate

base model

Null Space

Monte Carlo

Procedure

Modified after Doherty, Hunt and Tonkin 2010 USGS Scientific  Report

PEST

1. Base model parameterization (Pilot Point approach)

2. Base parameter sensitivities (Jacobian matrix)

3. Tikhonov constrains

PEST calibration output files

Random parameter sets based on C(p)

Evaluate predictive uncertainty

PEST 

1. Re-calibration

2. SVD-Assist

3. Beopest (parallel computing)

PNULPAR (Pest suite)

1. Calculate V2V2t and project differences between 

random parameters and the calibrated parameters 

onto the calibration null-space

2. Add projected differences to calibrated parameter 

values

3. “Almost calibrated” random parameter sets


