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Background

 For a groundwater modelling domain, lateral 
boundary conditions are commonly zero flux

• Lateral extent is normally chosen based on 
topography and surface water divides

• Groundwater divides are assumed to be 
coincident with surface water divides. 

• In fractured rock settings, fracture zones may 
cross surface water divides to permit groundwater 
flow across the divide. 
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Background - Site

 Hypothetical site situated in the Canadian 
Shield

• Approximately 100 km2

• Fractured crystalline rock setting 

• Surface lineament analysis from air photos

• Generate 3D discrete fracture zone networks 
(DFZN) using MoFrac

• Model groundwater flow with HydroGeoSphere
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Background - Models

 MoFrac
• Developed at Mirarco (based on work by Mohan 

Srivastava), a mining innovation research center in 
Canada

• Generates 3D fracture network models for rock mass 
characterization

 HydroGeoSphere
• HGS developed at the University of Waterloo and 

University of Laval

• Currently developed and supported by Aquanty Inc.
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Sub-regional Domain – Surface Lineaments
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Sub-regional Domain
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Discrete Fracture Zone Network
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 969 fracture zones



Discrete Fracture Zone Network
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Methodology

 Vary hydraulic conductivity of fracture zones
• High conductivity 10-6 m/s (governed by safety case)
• Low conductivity 10-9 m/s

 Vary surface hydraulic boundary condition
• Dirichlet across entire surface
• Dirichlet only at rivers, lakes, wetlands with Neumann 

recharge elsewhere

 Performance measures with steady-state models
• Freshwater heads
• Groundwater velocity magnitudes
• Groundwater velocity magnitude ratios (Vz/Vmag)
• Mean Life Expectancy (MLE)

10



Model Properties

 Matrix

• Hydraulic conductivity: 10-8 to 10-11 m/s

• Porosity = 0.3%

 Fracture

• Hydraulic conductivity = 10-6 m/s

• Width = 1m (assumed for safety case)

• Porosity = 10%
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Base-case Freshwater Heads
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 High fracture K, Dirichlet BC at surface



Base-case Velocity Magnitudes
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 High fracture K, Dirichlet BC at surface



Base-case Velocity Magnitude Ratio

14

 High fracture K, Dirichlet BC at surface



Base-case Mean Life Expectancy
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 High fracture K, Dirichlet BC at surface



Velocity Magnitude Ratio
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 High fracture K, Dirichlet BC at surface



Velocity Magnitude Ratio
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 High fracture K, Neumann BC at surface



Velocity Magnitude Ratio
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 Low fracture K, Dirichlet BC at surface



Velocity Magnitude Ratio
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 Low fracture K, Neumann BC at surface



Summary and Conclusions
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 Zones of upward or downward groundwater flow
• Identified using velocity magnitude ratios (Vz/Vmag)

• Vary depending on the surface boundary condition

• Vary depending on hydraulic connectivity across 
watersheds

• Divides can occur at these zones

 Model boundaries may need to be extended to 
allow groundwater to flow across divides through 
permeable fracture zones
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