27th September 2016

Occurrence of greenhouse gases (CO_2, N_2O) and CH_4 in groundwater of the Walloon Region (Belgium)

Anna Jurado¹, Alberto V. Borges², Vivien Hakoun³, Serge Brouyère¹

¹ University of Liège, ArGEnCO, Hydrogeology and Environmental Geology, Aquapôle, Sart-Tilman, Liege, Belgium.

² Chemical Oceanography Unit, University of Liège, Liège, Belgium.

³ Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain.

Objective

2. Methodology

2.1 Study area2.2 Sampling collection

3. Results

4. Assessment of the occurrence of GHGs

5. Conclusions

Importance of GHGs

✓GHGs are essential for life

✓ Without GHGs temperatures on Earth surface would fall from 15°C to -18 °C

Source: http://www.ehso.com/climatechange/climatechangecausesgreenhouseeffect.php

Importance of GHGs

✓GHGs are essential for life

✓ Without GHGs temperatures on Earth surface would fall from 15°C to -18 °C WHAT IS THE PROBLEM?

Importance of GHGs

✓GHGs are essential for life

✓ Without GHGs temperatures on Earth surface would fall from 15°C to -18 °C

Source: U.S. National Assessment (2014)

Source of GHGs

CARBON DIOXIDE (CO₂)

- ✓ Fossil fuel burning
- ✓ Changes in land use
- ✓ Industrial activities

NITROUS OXIDE (N_2O)

- ✓ Agricultural activities
- ✓ Fossil fuel combustion and industrial processes
- ✓ Natural processes (i.e soils)

METHANE (CH₄)

- ✓ Fossil fuel production, distribution and use
- ✓ Livestock farming
- ✓ Landfills and waste
- ✓ Wetlands

Groundwater as a source GHGs

Groundwater has been proposed as a potential indirect source of GHGs to the atmosphere.

Agricultural areas (Anderson et al., 2014: Jahangir et al., 2012, Minamikawa et al., 2011)

Some examples...

Jahangir et al. (2012)→ Groundwater indirect N₂O emissions via denitrification represented the 3–11% of total N₂O emissions.

Anderson et al. $(2014) \rightarrow 20$ % of total **N loss from** a riparian area may be attributed to N₂O emissions from **shallow groundwater** via denitrification.

Groundwater as a source GHGs

Groundwater has been proposed as a potential indirect source of GHGs to the atmosphere.

Riverine areas (Beaulieu et al., 2010, Hotchkiss et al., 2015)

10% of the **global anthropogenic** N₂O emission **rate** was due to microbial transformations **in river networks**

- (A) N_2O produced in the stream temporarily resides in a pool of dissolved N_2O before being emitted to the atmosphere.
- (B) In-situ N₂O produced by denitrification in stream
- (C) Other **unmeasured sources** N₂O sources:
 - ✓ Inputs supersaturated GW
 - indirect Nitrif/Denitrif from soils

Aims of the research

Investigate the occurrence GHGs in groundwater of the Walloon Region (Belgium)

 \checkmark Identification of the hydrogeological contexts and in situ conditions

 \checkmark Identification of the geochemical processes

2. Methodology

Walloon Region (Belgium)

- Extension: 16844 Km²
- Land use: agricultural (51,8%) > forests (29,4%)>urban (14,3%)
- Groundwater represents the 78 % of water supply (297,5 million m³)

Main aquifers

Groundwater abstraction (%, 2012)

SPW-DGO3 (2015). Etat des nappes d'eau souterraine de Wallonie. Edition : Service public de Wallonie, DGO 3 (DGARNE), Belgique. Dépôt légal D/2015/11802/64 - ISBN 978-2-8056-0190-3

2. Methodology

Sampling campaigns

GHGs (C1-C3) ✓ CO₂, N₂O, CH₄

General analysis

- ✓ Minor and major elements (C1-C3)
- ✓ Metals (Fe/Mn)

✓ Environmental isotopes (C3)

✓ 34S and 18O from sulphate
✓ 15N and 18O from nitrate
✓ 18O and D from water

Insitu parematers (C1-C3)

✓O₂/EC/PH/Temp

Spatial distribution of the sampling points

3. Results

Concentrations of Carbon dioxide (pCO₂)

Range→ 1769-100514 ppm Average→ 22003 ppm

Spatial distribution of the sampling points

3. Results

Concentrations of Nitrous oxide (N₂O)

Range \rightarrow 1-5637 nM Average \rightarrow 996 nM

3. Results

Concentrations of Methane (CH₄)

Range \rightarrow 0-1064 nM Average \rightarrow 64 nM

Spatial distribution of the sampling points

Occurrence of N₂O in groundwater

```
Denitrification: NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2

N_2O

\uparrow

Nitrification: NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-
```


Occurrence of N_2O in groundwater Denitrification: $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$ N_2O \uparrow Nitrification: $NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-$

congress

Occurrence of N₂O in groundwater

Self-Organizing Maps (SOMs)

Occurrence of N₂O in groundwater

Average concentrations			
Group	$N_2O(nM)$	O_2 (mg/L)	$NO_3 (\mu M)$
Ι	516.55	7.51	564.37
II	2377.31	3.64	831.28
III	188.15	1.51	215.04

Group I

High concentrations of O_2 Medium concentrations of N_2O and NO_3^-

Occurrence of N₂O in groundwater

Average concentrations			
Group	$N_2O(nM)$	O_2 (mg/L)	$NO_3 (\mu M)$
Ι	516.55	7.51	564.37
II	2377.31	3.64	831.28
III	188.15	1.51	215.04

Group I

High concentrations of O_2 Medium concentrations of N_2O and NO_3^-

Occurrence of N₂O in groundwater

Average concentrations			
Group	$N_2O(nM)$	O ₂ (mg/L)	$NO_{3}\left(\mu M ight)$
Ι	516.55	7.51	564.37
II	2377.31	3.64	831.28
III	188.15	1.51	215.04

Group II

Moderate O_2 High concentrations of N_2O and NO_3^-

Occurrence of N₂O in groundwater

Average concentrations			
Group	$N_2O(nM)$	O ₂ (mg/L)	$NO_{3}\left(\mu M ight)$
Ι	516.55	7.51	564.37
II	2377.31	3.64	831.28
III	188.15	1.51	215.04

Group II

Moderate concentrations of O_2 High concentrations of N_2O and NO_3^-

Occurrence of N₂O in groundwater

Average concentrations				
Group	$N_2O(nM)$	O ₂ (mg/L)	$NO_{3}\left(\mu M ight)$	
Ι	516.55	7.51	564.37	
II	2377.31	3.64	831.28	
III	188.15	1.51	215.04	

Group III

Low concentrations of O_2 Low concentrations of N_2O and NO_3^-

Occurrence of N₂O in groundwater

Average concentrations			
Group	$N_2O(nM)$	O ₂ (mg/L)	$NO_{3}\left(\mu M ight)$
Ι	516.55	7.51	564.37
II	2377.31	3.64	831.28
III	188.15	1.51	215.04

Group III

Low concentrations of O_2 Low concentrations of N_2O and NO_3^-

Occurrence of N₂O in groundwater

Environmental isotopes coupled with hydrochemistry data Identify origin of nitrogen Processes that produce/consume N_2O

Occurrence of N₂O in groundwater

Environmental isotopes coupled with hydrochemistry data Identify origin of nitrogen Processes that produce/consume N₂O

Autotrophic denitrification (Pyrite as electron donor): $5 \text{ FeS}_2 + 14\text{NO}_3^- + 4\text{H}^+ \rightarrow 7\text{N}_2 + 10\text{SO}_4^2 + 5\text{Fe}^{2+} + 2\text{H}_2\text{O}$

5. Conclusions

1. Groundwater of Walloon Region is oversaturated in CO_2 and N_2O relative to the atmospheric concentrations.

2. Preliminary results show that N_2O is produced by nitrification and denitrification and also consumed by denitrification.

3. Most favourable conditions for the accumulation of N_2O in groundwater seems to occur when NO_3^- is available and at medium oxygen concentrations.

Future work :

Integrate all the data available (environmental isotopes) Investigate the occurrence of CO_2 and CH_4

Thank you for your attention

Acknowledgements. A. Jurado gratefully acknowledge the financial support from the University of Liège and the EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme (2015-2017 from FP7-MSCA-COFUND, 600405).

Occurrence of CO₂ in groundwater

High PCO₂ in groundwater

Water percolating through the soil becomes enriched in CO_2 High PCO_2 can contribute to the dissolution of carbonate formations

Carbonates dissolution: $CO_2 + CaCO_3 (s) + H_2O \rightarrow 2HCO_3^- + Ca^{2+}$

2. Methodology

Walloon Region (Belgium)

>

- Extension: 16844 Km²
 - Groundwater represents the 78 % of water supply (297,5 million m³)
 - Land use: agricultural (51,8%) >forests (29,4%)>urban (14,3%)

Groundwater abstraction (%, 2012)

SPW-DGO3 (2015). Etat des nappes d'eau souterraine de Wallonie. Edition : Service public de Wallonie, DGO 3 (DGARNE), Belgique. Dépôt légal D/2015/11802/64 - ISBN 978-2-8056-0190-3

