

Faculty of Environmental Sciences Institute for Groundwater Management

Alireza Kavousi (1), Thomas Reimann (2), Steffen Birk (3), Ezzat Raeisi (1), Rudolf Liedl (2)

INSIGHTS INTO KARSTIC SYSTEMS THROUGH INVERSE APPLICATION OF DISCRETE CONDUIT-CONTINUUM MODELS

(1) University Shiraz; Institute for Earth Sciences (Iran)

(2) TU Dresden; Institute for Groundwater Management (Germany)

(3) University of Graz; Institute for Earth Sciences (Austria)

Cooperation / Contribution: Markus Giese (4), Martin Sauter (4), W. Barclay Shoemaker (5), Jean-Christophe Maréchal (6), German Research Foundation (DFG), German Academic Exchange Service (DAAD)

(4) University of Göttingen; Geoscientific Centre (Germany)

(5) United States Geological Survey, Davie, Florida (U.S.A.)

(6) French Geological Survey (BRGM), Montpellier (France)

43rd IAH Congress 2016

Montpellier, France, September 25-29th, 2016

Motivation dry valley Characterization of karst systems sinkhole strong heterogeneity epikarst anisotropy vadose zone highly variable, non-linear flow phreatic zone water table fissured matrix blocks conduit system river **Question:** karst spring (from Geyer 2008)

→ gaining insight through inverse modelling (dependent on available data)?

N°abstract 2405

Motivation

Characterization of karst systems

Example: Sheshpeer Catchment, Iran

from Google maps

congress

CORUM CONFERENCE CENTER

N°abstract 2405

Motivation

Characterization of karst systems

Example: Sheshpeer Catchment, Iran

Measured data (spring)

- discharge
- temperature
- electrical conductivity
- tracer concentration

CORUM CONFERENCE CENTER

N°abstract 2405

Modelling Approach

Discrete Conduit-Continuum model – flow process

Based on MODFLOW-2005 Conduit Flow Process (CFP)

quantifying groundwater flow

matrix: 3D groundwater flow (Darcy) conduits: 1D laminar / turbulent pipe flow (Darcy-Weisbach) head-dependent water transfer between matrix and conduits $Q_{ex} = \alpha_{ex}(h_c - h_m)$ Conduit Associated Drainable Storage CADS (directly linked to conduits)

Modelling Approach

Discrete Conduit-Continuum model – transport process

Based on Conduit Aquifer Void Evolution (CAVE)

- heat and solute transport
- 1D advection with physically based Taylor dispersion, diffusive boundary layer
- 1D radial diffusion / heat conduction around conduit

transport considers flow state (laminar / turbulent), for example Taylor dispersion:

- laminar $D = \frac{1}{2}$
- turbulent $D = 10.1rv_{\star}$
- D = Taylor dispersion coefficient
 - = conduit radius

 D_{Diff} = diffusion coefficient in water

- v = velocity
- v_* = friction velocity

Inverse parameterization with multiple signals

Large scale: Sheshpeer system (Iran)

Inverse parameterization with multiple signals

Inverse parameterization with multiple signals

Large scale: Sheshpeer system (Iran)

Simplified realistic models - example: effects of conduit structure (red cells)

Inverse parameterization with multiple signals

Large scale: Sheshpeer system (Iran)

Simplified realistic models - example: effects of conduit structure - calibration with PEST

discharge

solutes (tracer)

temperature

conduit structure 4 supported

Inverse parameterization with multiple signals

Large scale: Sheshpeer system (Iran)

Simplified realistic models – next stage: parameters refined

- 1. Vertical saturated conductivity (VKS)
- 2. Saturated water content (*THTS*)
- 3. Direct recharge component (CADS-RCH)
- 4. Water temperature $(T_{Dir.rech.})$
- 5. Hydraulic conductivity (*K*)
- 6. Specific yield (S_{γ})
- 7. Exchange coefficient (α_{ex})
- 8. Conduit diameter (d_c)
- 9. Conduit tortuosity (τ_c)
- 10. Wall roughness (k_c)
- 11. Width of CADS (W_{CADS})

Inverse parameterization with multiple signals

Large scale: Sheshpeer system (Iran)

Simplified realistic models – next stage: Results

variation 4c is statistically supported

Conclusions and Outlook

Conclusions

MODFLOW based discrete conduit-continuum flow and transport model

- → approach works at 1st and 2nd level for Sheshpeer catchment
- → best model (4c) cannot be proved to represent "the truth" but is only found to be superior to other models tested
- → proposed approach needs considerable amount of reliable data

Outlook

- → develop "detailed realistic models" (3rd level of approach) for Sheshpeer catchment (maybe after additional field work)
- → improve code performance: optimized discretization (trade-off between Taylor dispersion and numerical dispersion)
- → try applications with diffuse pollution (e.g. nitrates)
- → coupling with integrated hydrologic flow models

Merci pour votre attention!

