

New insights on the changes induced by a potential CO₂ leakage on the fate of trace metals in fresh groundwater: The case of the Albian aquifer

Devau N.¹, Humez P.², Barsotti V.³, Muller F.³, Lions J.¹,

² Applied Geochemistry group, University of Calgary, Canada ³ ISTO-CNRS, Orléans, France

AIH – Montpellier, 28th September, 2016

Potentials impacts on GW resources

- > CIPRES: French national project dedicated to asses potential impacts of CO₂ leak on GW quality
- > Identification of the geochemical reactivity
 - Trace element mobilization
- Case study: Albian aquifer
 - Strategic reserve for DW supply
 - Multi-layered aquifer with a specific layer : green sand
 - Glauconite ?
- Research strategy combining experiments and modelling: 1 step for glauconite + 1 step on Green sand

Glauconite reactivity: experiments

- > 3 glauconites have been studied (ARD, GADP-2, NJ)
- > Alteration range
 - GADP-2 < ARD < NJ
- > Isotherms on glauconite (Barsotti et al., 2014)
 - Ni, Zn and As
 - 5 concentrations ranging from 10⁻⁶ to 10⁻⁴ mol.l⁻¹
 - 2 pH: pH 7 and pH 5

Glauconite reactivity: Results

- > Ni is more sorbed than Zn
- > Less altered glauconite has higher affinity towards Zn and Ni
 - GADP-2 > ARD > NJ
- Surface properties are contrasted according to alteration of glauconite
 - CEC and specific surface area are higher for GADP-2 and ARD
- > Lower sorption under acidic conditions
 - Surface sites are mainly protonated:

 SOH_2

Green sand: Batch experiments (Humez et al., 2012)

> Green sand + Albian water + 2 bars CO₂

> 1 month length (1d, 7d, 14d, 30d)

 Evidence for fast and slow release of trace metals

> Parameters:

- pH
- redox,
- major elements
- trace elements

Green sand: Geochemical model

(Phreeqc code + Thermoddem database)

> Mineralogical assemblage

- Primary minerals: Qz, Glauconite, Dolomite, Fluorapatite
- Secondary minerals: calcite, siderite,

> Initial water

Equilibrium with primary minerals

> Geochemical processes

Kinetic dissolution/precipitation reactions for primary minerals (TST formalism)

$$R_m = k_m A_m \left[\exp\left(\frac{p\Delta_r G}{RT}\right) - 1 \right]^q = k_m A_m \left[1 - \left(\frac{Q_m}{K}\right)^p \right]^q$$

- Equilibrium dissolution/precipitation reactions for secondary minerals
- SCM to simulate sorption on quartz
- SCM + CE model to simulate sorption

on glauconite (step 1)

Minerals	Fraction
Quartz	0,8
Glauconite	0,1
Kaolinite	0,098
Fluorapatite	0,001
Calcite	0
Sidérite	0

Green sand: Results

- > pH decreases and alkalinity increases
 - CO₂(g) dissociation

 $H_2CO_3 \leftrightarrow CO_3^2 + 2H^+$

- The decrease of pH is buffered by dolomite dissolution
- $CaMg(CO_3)_2 + \frac{2H^+}{Ca^{2+}} \leftrightarrow Ca^{2+} + Mg^{2+} + H_2CO_3$
 - Dolomite dissolution increases alkalinity
- > Si and K increases caused by glauconite dissolution reaction
- > Dolomite and fluorapatite induces an increase of Ca, Mg and PO4 concentrations

Green sand: Results

- > Increase of the Zn and Ni concentrations.
 - pH decrease.

 $SO_2M + 2H^+ \leftrightarrow 2SOH + M^{2+}$

• Competition with the desorbed Ca and Mg $X_2M + Ca^{2+} \leftrightarrow X_2Ca + M^{2+}$

 $X_2M + Mg^{2+} \leftrightarrow X_2Mg + M^{2+}$

 Dissolution of glauconite induces a decrease of reactive surface area

Conclusions

> Understanding glauconite reactivity towards trace metals

- Strong reactivity for Zn and Ni
- pH-dependence of sorption processes
- Both edge surface site and basal surface sites are involved
- > Geochemical model developed to simulate how CO2 leakage could impact release of trace metal in Albian green sand
 - pH, alkalinity and fate of main major elements are correctly reproduced
 - Release of Zn and Ni is accurately simulated
 - Sorption reactions are strongly impacted by CO2 leakage
- Predictive 3D reactive transport model to extrapolate geochemical variability with time and space according to flow rate and leakage rate (poster n° 1598)

Thank you for your attention

Step 3: 3D Reactive transport model

> 3D reactive transport model: ThoughReact version 3 (Xu, 2010)

Direction de l'écoulement

- Geocehmical model based on step 2 (React code)
- Tough code for flow and transport models
- Thermodynamic database Thermoddem (Blanc et al. 2012)
- Homogeneous system

> Geometry

- 200 m x 500 m and 60 m thick
- Grid refinement around the leaking point

> Simulation (100 years)

• CO₂ leak at the bottom 3 rates

> Scenario

- Initial equilibrium (50 d)
- CO₂ leak (315 d.)
- natural release (99 yr)

Step 2: Experimental studies on the albian green sand

> Batch reactor (Humez et al. 2012)

 Evidence of surface reaction (fast release) and mineral dissolution (slow release) in presence of CO₂

> Isotherms on glauconite (Barsotti et al. 2014)

Ni, Zn and As

> Geochemical model (PHREEQC)

- Kinetics parameter for mineral dissolution
- Surface processes

Expérimentations

> Echantillons

> Caractérisation des glauconites

- Minéralogie des roches (DRX, MEB, analyse chimiques)
- Lames minces (MEB, µsonde électronique)
- Mesures de la CEC
- Mesures surface spécifique (BET)

> Isothermes d'adsorption

- 3 ETM sélectionnés: Zn, Ni, As
- 5 concentrations initiales croissantes:

Zn (1x10⁻⁶ à 1x10⁻⁴ mol.l⁻¹), Ni (5x10⁻⁷ à 5x10⁻⁵ mol.l⁻¹) et As (5x10⁻⁶ à 5x10⁻⁴ mol.l⁻¹)

• 2 pH: pH 7 (pH de l'eau de l'Albien) et pH 5 (pH eau + fuite de CO₂)

Geochemical evolution with time at the leaking point (leak: 0.01 kg/s for 315 d.)

$> CO_2$ leak

- Sg increase to 0.18 and 0.5 at top
- pH drop from 7.5 to 4.9
- DIC increase from 0.002 to 1.3 mol/l

> Attenuation of gas phase

- Sg drop to 0 (migration & dissolution)
- DIC nearly constant ~1.3 mol/l
- pH increase to 5.6

> Attenuation of aqueous species

- DIC progressively decrease
- pH smoothly increase up to 5.8

Geochemical monitoring

> Some criteria

- Position & depth
 - Sensors & sampling must intercept the plume
- Parameters & leakage indicators
 - Early warning (fast reaction)
 - Conservative vs natural attenuation (long term)
- Baseline & threshold values
 - Significant variation of monitored values vs. initial value (background level and natural variation) :

Variation (Δ) > natural variability

Geochemical monitoring

> Gas phase

- Above the leak
- Accumulation at the top of the aquifer
- Natural attenuation after leak stops
 - 7 yrs above the leak

> Dissolved CO₂

- Above the leak
- At the top of the aquifer

- Long term: vertical migration (density effect) and accumulation at the bottom
- $\Delta 10\%$: at 100 m downstream in 10 yrs (earlier than pH)
- Natural attenuation after leak stops
 - 22 yrs above the leak

Géosciences pour une Terre durable

Sg

Geochemical monitoring

> pH

- First detection above the leak & <u>at the top</u>
- Long term : vertical migration (density effect) and acidification <u>at the</u> <u>bottom</u>
- Limited natural buffering effect: pH ~6
- Δ10% : at 100 m downstream in 30 yrs

> Aqueous Silica

- Dependant of pH drop
- First detection above the leak & at the top
- Long term (kinetic control, glauconite dissolution): accumulation with time
- Δ10% : at 100 m downstream in 12 yrs (earlier than pH)
- No natural attenuation after leak stops

Géosciences pour une Terre durable

Baseline acquisition and monitoring

Steps	Regional investigation	Exploration	Installation	Exploi	tation	Post-closure Monitoring	After transfer of repsonsabi lity
Objectives	Identify area suitable for CCS	Identify and characterize the reservoir suitable (security) for CCS	Installation and equipment	Injection	of CO ₂	Control and monitoring of the storage	Permanent confinement of the storage
Monitoring	Environmental Baseline	Monitoring plan design	Operational Baseline acquisition	Regular Monitoring	Reinforced Monitoring	Post- exploitation monitoring	Long term monitoring
Target	State of the art Spatial variability	Identify the risk and define an adapted monitoring plan	Baseline acquisition for the designed monitoring plan Temporal variability	Monitoring and threshold values to trigger reinforced monitoring	In case of anomalous value during baseline monitoring, identify any failure	Post-exploitation monitoring	Long term monitoring
Time	> 2 yrs	~ 5 yrs	> 2 yrs	20-50 yrs		20-50 yrs	20-50 yrs
			L _{cs}			Géosciences pour un	e Terre durable

brgm

m₀ ou cible

Conclusions

Impacts assessment and elaboration of monitoring plan need to consider correctly the geochemical reactivity of CO₂

- In this case study: 272 t injected during 1 yr, CO₂ plume migrates 30 m downstream and disappear in 7 yrs (regional flow enhance natural attenuation)
- Vertical migration (↑↓) and down-gradient (with regional flow)
- Density effect observed directly (gas, DIC) but also on water composition and geochemical reactivity

> Different geochemical reactivities with time and space according to flow rate and leakage rate

- This dynamic must be considered in monitoring plan (parameters, localization)
 - 3 areas: gas plume, CO₂ footprint, down-gradient area
 - 3 steps : leakage, gas saturation decrease, aqueous attenuation
- Natural system are heterogeneous -> complex flow & pathways

> Metal release and scavenging

- Metals are released (exceeding DWS according to leakage rate) but released Ni and Zn are rapidly sorbed
- Sorption (ion exchange and surface complexes) along the CO₂ plume pathway is sensitive to pH variations

Transport model

> Simplified properties

- Homogeneous aquifer
- Porosity 20% and permeability 500 mD
- Sleipner sand properties for the multiphase flow (unconsolidated sandy formation analogue)

> Regional flow

- Based on observed values
 - No hydraulic gradient = 0
 - Hydraulic gradient = 4‰ (2 bar / 500 m)

Relative permeability (van Genuchten)	From Sleipner (Utsira sandstone)
λ=1-1/n	0.63
Residual liquid phase Saturation (Slr)	0.05
Liquid phase saturation (Sls)	1
Irreductible gas saturation (Sgr)	0.2
Capillarity pressure (van Genuchten)	
λ=1-1/n	0.63
Residual liquid phase saturation (Slr)	0.05
Po (Pa)	1400
Liquid phase saturation (SIs)	1

Geochemical model		
 Primary minerals observed experimentally and included in the models (with kinetics) Oz Glauconite Kaol Eluorapatite Pyrite 		
- Reactive surface area optimized		Bouligny
• Exp. surf. area / 1000	рН	6.6
	pCO2 (bar)	0.023
	AI (mol/l)	4.78×10
> Initial water	C (mol/l)	2.17×10
 Initial water is equilibrated with minerals 	Ca (mol/l)	-4 5.0×10
 Initial water is slightly under-saturated 	CI (mol/I)	1.38×10
with secondary minerals	F (mol/l)	1.05×10
 calcite and siderite 	Fe (mol/l)	1.02×10
	K (mol/l)	1.13×10
	Mg (mol/l)	1.48×10
	Na (mol/l)	1.39×10
	Si (mol/l)	2.08×10

Minerals Fraction Quartz 0,8 Glauconite 0,1 Kaolinite 0,098 Fluorapatite 0,001 Pyrite 0,001 Calcite 0 Sidérite 0

	Bouligny	Orsay	Model	
рН	6.6	7.5	7.5	
pCO2 (bar)	0.023	0.004	0.004	
AI (mol/I)	-8 4.78×10	-8 9.27×10	-9 5.63×10	
C (mol/l)	-3 2.17×10	-3 2.02×10	-3 2.03×10	
Ca (mol/l)	-4 5.0×10	-4 7.1×10	4.87×10 ⁻⁴	
CI (mol/I)	-4 1.38×10	-4 1.38×10	-4 1.38×10	
F (mol/l)	-5 1.05×10	-5 1.05×10	-5 1.05×10	
Fe (mol/l)	-4 1.02×10	- ₆ 3.04×10	-5 1.22×10	
K (mol/l)	-4 1.13×10	-4 2.10×10	-3 2.83×10	
Mg (mol/l)	-4 1.48×10	-4 2.51×10	2.05×10 ⁻⁴	
Na (mol/l)	-4 1.39×10	-4 2.44×10	1.39×10 ⁻⁴	
Si (mol/l)	2.08×10 ⁻⁴	-4 2.20×10	-4 1.99×10	

> 28

Nickel evolution with time at the leaking point

> Initial distribution of Ni

- Aqueous: &
- Exchange-Ni: +
- Surface complexes: +++

$> CO_2$ leak

- Exchange-Ni: ++
- Surface complexes: +++

> Attenuation of gas phase

- Aqueous Ni: +
- Exchange-Ni: +++
- Surface complexes: ++++

> Attenuation of aqueous species

- Exchange-Ni: ++
- Surface complexes: ++++
- Aqueous Ni: ٤

Nickel evolution with time at the leaking point

> Initial distribution of Ni

- Aqueous:
- Exchange-Ni: +
- Surface complexes: +++

> CO₂ leak

- Aqueous Ni: ++++ \rightarrow above DWS
- Exchange-Ni: ++
- Surface complexes: +++

> Attenuation of gas phase

- Aqueous Ni: +
- Exchange-Ni: +++
- Surface complexes: ++++

> Attenuation of aqueous species

- Exchange-Ni: ++
- Surface complexes: ++++
- Aqueous Ni: ε

Monitoring plan

Gaz saturation

- Above the leak
- Downstream at the top of the aquifer

✓ Natural attenuation

Monitoring plan

Dissolved CO₂ (eq. HCO₃)

- Above the leak
- First detection at the top but large accumulation at the bottom
- 100 m downstream after 10 yrs
 - Earlier than pH (no bufferinf effect)
- Natural attenuation

Monitoring plan

Aqueous Silica (SiO₂)

- Above the leak
- First detection at the top but large accumulation at the bottom
- 100 m downstream after 15 yrs
 - Earlier than pH (no buffering effect)
- No natural attenuation

