

Introduction

Nitrate pollution is one of the main concerns for water management in the Osona region (NE Spain, *Fig. 1*), as high nitrate concentrations are frequently found in groundwater, reaching up to 500 mg NO_3^{-}/L . The main source of nitrate in the Osona aquifers is slurry and manure applied to crops as fertilizers. Nitrate can be reduced by dissimilatory nitrate reduction to ammonia (DNRA) or by denitrification, being the later the unique process that ensures nitrogen removal in groundwater. Although several studies have observed natural groundwater denitrification in Osona area, mainly related to pyrite oxidation, little or no attention has been made on bacterial functional marker genes involved in nitrate reduction. I this work, functional gene abundances together with hydrochemical and isotopic characteristics (by means of $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ isotopic signatures of NO₃⁻) were used to characterize nitrate reduction conditions from an ecological approach.

43rd IAH CONGRESS

25-29th September, 2016

le Corum , Montpellier, France

Analysis of nitrate attenuation conditions in groundwater from an ecological approach

E. Hernández-del Amo¹, A. Menció², J. Mas-Pla^{2,3}, Ll. Bañeras¹, F. Gich¹

¹ Institut d'Ecologia Aquàtica, Universitat de Girona. E-mail: <u>frederic.gich@udg.edu</u> ² Grup de Geologia Ambiental i Aplicada (Gaia), Centro de Geologia i Cartografia Ambiental (Geocamb), Departament de Ciències Ambientals, Universitat de Girona. E-mail: <u>anna.mencio@udg.edu</u> ³ Institut Català de Recerca de l'Aigua (ICRA), Girona. E-mail: jmas@icra.cat

Methodology

Samples were taken from eight wells in similar geological formations in the Osona area (*Fig.1*), that is wells exploiting carbonate sandstones and prodeltaic marls. Physicochemical parameters, major ions, nutrients, and water and nitrate stable isotopes were measured in all of them. Moreover, abundances of the genes implied in the two key steps of denitrification (nirK, nirS, nosZI and *nosZII*) were determined by qPCR.

Analysis of 16S rRNA gene community was carried out by sequencing using Illumina MiSeq.

Results

Hydrochemical and isotopic data

Most of the hydrochemical parameters increased following the groundwater flowpath. This is not only the case of Ca^{2+} , Mg^{2+} , SO_4^{2-} and Cl^{-} , but also of $NO_{3^{-}}$, which showed lower values in NE wells (ranging 16.6-26.3 mg/L) and tended to increase in SW wells (with concentrations of 54.6-89.17 mg/L).

According to the $\delta^{15}N$ and $\delta^{18}O$ results, all the samples were in the rage of manure and/or sewage values, most of them showing an enrichment caused by denitrification (Fig.2). According to the O enrichment factor, samples SPT-001, TOR-013 and SMC-001 could present a degree of denitrification lower than 10%, in SMC-002 is approximately of 15%, and in SMC-037, SMC-025 and MNL-019 the degree of denitrification could be higher than 25%.

Rererences

- Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L. 1990. Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114(3-4):413-424.
- Boy-Roura, M., Nolan, B.T., Menció, A., Mas-Pla, J. 2013. Regression model for aquifer vulnerability

Fig.3: PCoA analysis of groundwater microbiomes (Weighted Unifrac similarity of an OUT based definition of bacterial communities). Environmental variables are shown as vectors correlating to PCoA axes (Spearman's correlation, R>0.6, NO_3^- R<0.2).

The most represented classes in the groundwater microbiome were Alphaproteobacteria, Nitrospira, Clostridia, Parcubacteria, Acidobacteriia and Sphingobacteriia (Fig.4), which could include some denitrifier members.

assessment of nitrate pollution in the Osona region (NE Spain). Journal of Hydrology, 505:150-162. DOI: -10.1016/j.jhydrol.2013.09.048

– Fukada, T., Hiscock, K.M., Dennis, P.F., Grischek, T. 2003. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Research, 37(13):3070-3078. – García-Lledó, A., Vilar-Sanz, A., Trias, R., Hallin, S. & Bañeras, L. Genetic potential for N2O emissions from the sediment of a free water surface constructed wetland. Water Res. 45, 5621–32 (2011).

Conclusions

 $\sqrt{1}$ Denitrification was detected in all the sampled wells nearly half of them showing denitrification higher than 25%.

 $\sqrt{1}$ Denitrifying genes were detected in all the studied wells, confirming the capability to reduce completely NO_3^- to N_2 in the polluted areas.

 $\sqrt{1}$ The *nosZ* gene encodes the final step of denitrification, consequently denitrifier communities with low *nosZ* to *nir* gene ratios can result in N₂O accumulation. This situation occurred in wells showing a medium denitrification potential.

 $\sqrt{1}$ Changes in the microbial community in nitrate polluted groundwater was not entirely determined by denitrification potential, other physicochemical variables, such as the redox potential, sulfate concentration and TOC, seemed to have an equivalent similar effect.

Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Chang. Biol. 17, 1497–1504 (2011).

[–] Wei, W. et al. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J. 9, 1954–1965 (2015).