The interaction between surface reservoirs, multi-layered coastal aquifer and the sea

Tal A. (1, 3), Weinstein Y. (3), Yechieli Y. (2)

1. Hydrological service of Israel,

- 2. Geological Survey of Israel
- 3. Department of Geography and Environment, Bar-Ilan University

Location maps

General topics

- interaction between the fishponds and the aquifer
- interaction between the aquifer and the sea

Geological structure

All the pumping is from units B and C

Hydrograph (water level)

Chemical and isotopes results

source	observ ation	Ca++	Mg ⁺⁺	Na+	K +	Cl-	SO ₄	HCO ₃ -	NO ₃ -
Ponds	9	113	148	1032	31	1978	262	204	1
Units B and C (pumping wells)	32	181	160	1115	37	2111	277	331	11
Cenomanian	12	182	138	1033	24	1976	233	332	15

Organic and nutrients results

Summary of chemical result

Cl mgl	Eh	DO	NH4 (μM)	NO2 (μM)	NO3 (μM)	ΡΟ4 (μM)	TOC mgl	C-13 ‰PDB	dD ‰ SMOW	d18O ‰ SMOW	source
1978	-29	3.4	445	0.8	32	11.9	6.6	-5.7	-8.4	-1.8	pond
2260	-165	1.2	555	0.8	36	14.8	3.8	-8.6	-4.9	-1.0	Unit A
2111	91	2.8	6	0.1	176	0.3	0.5	-11.2	-20.4	-4.3	Units B and C
1976	55	3	5	0.1	194	0.4	0.7	-10.3	-21.7	-4.6	Cenomanian

Two main groups:

- 1. fishpond and unit A
- 2. units B + C and the Cenomanian (Judea)

CHIRP survey - mapping the clay layer at the sea area

Seismic interpretation

Seabed

Top clay layer

Top Sandstone layer (unit B)

Schematic hydrogeology sections

TDEM survey - Seawater intrusion

Unit B South: brackish water North: fresh water

EC profile Ω Unit EC mS/cm 10 20 30 40 50

SMD result

2D Feflow simulation

Feflow simulation – relation between the coastal aquifer and the underline Cenomanian aquifer

Q (mcm/year – 1 km) With pumping	Q (mcm/year – 1 km) Without pumping	East boundary head (m)
5.4	2.2	H = +5

summary

- Ponds water can be recognized in the aquifer by its high Nutrient and OM concentration, low dissolve Oxygen, redox condition and enriched stable isotope of Oxygen, Deuterium and Carbon. This is very different from the water in the lower units.
- We showed that the clay layer can be very effective with prevent the ponds water reaching to the lower units
- In multi-layer coastal aquifer, the seawater intrusion effected by the continuity of the confining clay layers into the sea.
- The limited seawater intrusion is explained by the inflow from the major aquifer in the east, which was increased due to that overpumping.