Nation-wide estimates of rainfall recharge, groundwater flow and baseflow

Rogier Westerhoff – GNS Science, Deltares Paul White – GNS Science

GNS Science

Hydrogeology

- Smart Aquifer Characterisation (SAC) Programme, funded by Ministry of Business, Innovation and Employment (MBIE), 2011-2017
- Co-funding from European Union Project 'eartH2Observe'
- In collaboration with Andrew Tait (NIWA) (VCS data)
- Case study co-funded by Waikato Regional Council

- Currently, no consistent national approach
- Required for national inventory / stocktake
- As a means to fill in the gaps between observed data points in national, regional and sub-regional studies

Rainfall recharge

GNS Science

Hydrogeology

Rainfall recharge: method

National Groundwater Recharge Model (NGRM)

- remotely sensed components
- soil water balance (SWB) approach
- monthly time step
- 1km x 1km resolution
- includes:
- includes geology
- and surface runoff estimate
- Other SWB models:
 - SOILMOD (Scott, 2004)
 - SOILMOD/DRAIN (White et al., 2014)
 - SMB-SMC (Hong and White, 2014)
 - USGS-SWB (Westenbroek et al., 2012)
 - WaterGAP, WGHM (Döll and Fiedler, 2008)

Rainfall recharge: method

In month i: $RECH_i = \{R_i f_{slope} - AET_i - S_{i-1}\} f_{soil}f_{geology}$

Westerhoff, R., White, P., and Rawlinson, Z.: Application of global models and satellite data for smaller-scale groundwater recharge studies, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-410, in review, 2016.

r.westerhoff@gns.cri.nz

Precipitation

- Estimates from NIWA Virtual Climate Station (VCS) data (Tait et al., 2006)
- Uncertainty estimated as standard deviation. It increases with terrain slope

r.westerhoff@gns.cri.nz

GNS Science

Rainfall recharge: method

Evapotranspiration

Satellite sensor: MODIS Products: PET, **AET** (Mu et al, 2011)

Penman-Monteith Spatial res.: 1km x 1km Temporal res.: monthly Time: Jan 2000 – Dec 2013

With uncertainty (Westerhoff, 2015)

Interception Ic as function from precipitation and MODIS Leaf Area Index (LAI):

*Ic = (P * LAI) / 3E+03*

Rainfall recharge: method

Geology: hydraulic conductivity K

- QMAP main rock type, secondary rock type and age are converted to K through look up table approach (183 members)
 - Input from Gleeson et al. (2011) Tschritter et al. (2014)
- Rasterised to 1km x 1km

Uncertainty ~ K

Rainfall recharge method: uncertainty

$$\sigma_f^2 = g^T V g$$

where σ_f^2 is the variance of a function f, which has $n_i = 1$: N input components; Vis the variance-covariance matrix of all input components; g is a vector of input component $\partial f / \partial n_i$ and g^T is the transpose of g (e.g., Tellinghuisen, 2001).

So, if
$$R_i = \{P_i f_{slope} - AET - S_{i-i}\} f_{soil,geol}$$

Then:
$$g = \left(\frac{\partial R}{\partial P}, \frac{\partial R}{\partial f_{slope}}, \frac{\partial R}{\partial AET}, \frac{\partial R}{\partial S}, \frac{\partial R}{\partial f_{soil,geol}}\right)$$
,

$$\begin{aligned} \frac{\partial R}{\partial P} &= f_{slope} f_{soil,geol};\\ \frac{\partial R}{\partial f_{slope}} &= P f_{soil,geol}\\ \frac{\partial R}{\partial AET} &= -f_{soil,geol}\\ \frac{\partial R}{\partial S} &= -f_{soil,geol}\\ \frac{\partial R}{\partial f_{soil,geol}} &= P f_{slope} - AET - S \end{aligned}$$

r.westerhoff@gns.cri.nz

• .. = covariance, which was calculated through a covariance analyses of 2 years of monthly compiled model input data.

Rainfall recharge: results

Monthly rainfall recharge 1km x 1km Jan 2000 – Dec 2013

recharge high in some mountain and flank regions, mostly due to high rainfall and low ET. But that is not uncommon (e.g., Calmels *et al*, 2011)

r.westerhoff@gns.cri.nz

Rainfall recharge: results

Uncertainty

Translated to standard deviation

r.westerhoff@gns.cri.nz

Rainfall recharge: results

r.westerhoff@gns.cri.nz

Groundwater flow and water table

GNS Science

Hydrogeology

- The Equilibrium Water Table (EWT) approach was used to estimate a long-term average water table
- EWT is a simple model: it calculates long-term balance between recharge R and groundwater flow Q. It is a 'natural long-term water table'

Transient model. Runs are typically ~100 year at daily time step.

K decays over depth, as aq function of terrain slope

Source: Fan et al. (2013), Freeze and Cherry (1979)

SMART

The EWT covers the known shallow aquifers systems and can thus be used as an estimate of depth to water table in data sparse areas (Westerhoff and White, 2014) and provides an indication of pre-European water table

r.westerhoff@gns.cri.nz

Baseflow

GNS Science

Hydrogeology

Waipa River catchment study

- Flow recorder site data in a conceptual water budget
- SAC-RECH recharge model
- USGS-SWB recharge model

were used in a comparative study in the Waipa River catchment

Source: *White et al. (2015); **Rawlinson et al. (2015)

Case study: Waipa River catchment

Source: *White et al. (2015); **Rawlinson et al. (2015)

r.westerhoff@gns.cri.nz

Case study: Waipa

Similar results. NGRM fits the total measured base flow out of catchment best.

r.westerhoff@gns.cri.nz

Assuming negligible groundwater in- and out-flow:

r.westerhoff@gns.cri.nz

Groundwater flow

EWT for Waipa River catchment

Result after 100
years of daily
model runs using
SAC-RECH
recharge as input

Case study: Waipa

Hydraulic head (EWT)

Water level measurements

>1000

500

200

100

50

20

<10

Potentiometric surface (mASL)

Case study: Waipa

- Model runs 100 years in daily time steps
- From 50-100 years, all groundwater discharging to surface is summed
- Then, it is averaged and scaled to recharge

- Requires comparison with an gw-flow models
- Uncertainty of rainfall and AET are still a topic of research
- River recharge is not implemented
- Land use: Water Holding Capacity, interception not accounted for
- More comparison to measured flow required

- Nation-wide rainfall recharge (monthly, 1km x 1km) that compares well to lysimeters and other models
- National scale groundwater flow model
- Baseflow estimates: conceptual and gridded estimates

SMART

Rogier Westerhoff Paul White

Deltares, GNS Science, Waikato University, eartH2Observe

<u>rogier.westerhoff@deltares.nl</u> <u>r.westerhoff@gns.cri.nz</u>

<u>p.white@gns.cri.nz</u>

