

The mechanism of groundwater fluctuations induced by sea tide in unconfined aquifers

Levanon Elad^{1, 2}, Yechieli Yoseph², Shalev Eyal² and Gvirtzman Haim¹

¹ Institute of Earth Sciences, Hebrew University of Jerusalem, Israel

² Geological Survey of Israel

Short Introduction

Sea tides cause:

- Water table fluctuations
- Fresh-saline water interface fluctuations

- Does the water table and the fresh-saline water interface (FSI) fluctuate simultaneously?
- What is the mechanism and dynamics of the coastal groundwater system?

Methods 1. Numerical model

Theory - based on 2D numerical model (Feflow)

Methods 2. Field observation

Coastal aquifer of Israel

Levanon et al., 2016. Under review

Levanon et al., 2016. ADWR

Levanon et al., 2016. ADWR

Theoretical mechanism

Levanon et al., 2016. ADWR

The first process is faster since it controlled by K_s , while the second one is slower since it controlled by $K(\theta)$

Conclusions so far

- Tidal influence composed of two processes, occurring simultaneously:
 - 1. Pressure wave propagation in the deeper part of the aquifer, controlled by the saturated parameters.
 - 2. Fluctuations of the fresh water body, controlled by the unsaturated flow in the capillary zone.
- The time-lag of the salinity in the FSI and of the water table is similar, both larger than time-lag of hydraulic head in the FSI.
- The actual flow and solute transport are controlled by the unsaturated flow in the capillary zone.

Field: monitoring set-up

Levanon et al., 2016. Under review

Results Field: raw data

Levanon et al., 2016. Under review

Head and salinity in the FSI

Results Field: time-lag

Time-lag of water table

Results Field: time-lag

Time-lag of salinity in the FSI

Conclusions

- In general field results are in good correlation with the numerical model.
- Numerical and field results indicate mechanism which includes two processes:
 - 1. Pressure wave propagation, controlled by saturated parameters.
 - 2. Actual water fluctuations, controlled by unsaturated parameters.
- Hydraulic head fluctuations in the deeper part of the aquifer is faster than the actual flow, since it controlled by the pressure wave (first process).
- Water table and the salinity in the FSI fluctuate simultaneously, since both controlled by the unsaturated flow (second process).
- In the short-screened boreholes only the first process influence, since there is no capillary zone in the borehole.

Thanks!