

G. Gaultier¹, M. Boisson¹, R. Vigouroux¹ & F. Izoard²

N°2158

1: Artelia Eau et Environnement, Echirolles, France 2: SEM Innovia, Grenoble, France

GRENOBLE Urban Redevelopment Project

N°2158

GRENOBLE Urban Redevelopment Project

Area	2.5 km ²	
Schedule	→ 2035	
Planner	SEM INNOVIA (semi-public development company)	
Floor area	790 000 m ²	
	 Research labs Higher education Family and student housing Hotel and service sector, leisure activities and shops Public facilities 	

Hydrogeological Context

Two aquifers

- An upper aquifer: fluviatil alluvia (K ~4.10⁻³ m/s)
- A deep aquifer: lacustrine alluvia
- → Favorable context for the development of shallow groundwater geothermal systems

SEM Innovia promotes the use of geothermal energy

- \rightarrow Reduction of greenhouse gases
- \rightarrow Economic benefit

However, many interactions with underground structures or groundwater uses may occur

Diaphragm wall

Underground structures

Possible impact of new open loop system :

- \rightarrow Water table change,
 - Geotechnical issues
 - Groundwater inflow into car parks
 - Clear water inflows into sewerage network

Existing open loop and pumping wells

Possible impact of new open loop system :

- \rightarrow Groundwater change,
 - Lower efficiency of wells

European Synchrotron Radiation Facility (ESRF)

ESRF:

Very sensitive to ground movements → Related to groundwater level changes

congre

European Synchrotron Radiation Facility (ESRF)

Specific drainage system to stabilize groundwater levels

Possible impact of new open loop systems :

- \rightarrow Water level change,
- → Ground movement
- Recalibration of ESRF
- Operating loss

Lyon

How to promote a sustainable approach within a context : - not yet fully regulated

- with many potential interactions with underground uses?

 \rightarrow SEM Innovia is developing a twofold approach:

Governance Decision aid Tool

 \rightarrow Governance

□ **<u>Raising awareness</u>** of the use of geothermal energy

N°2158

 \rightarrow Governance

Raising awareness of the use of geothermal energy

Financial leverage

- Consultation with developers
- Pooling of common infrastructure
- Shared cost (Innovia/developer) of common infrastructure
- Innovia support regarding statutory procedures

e.g. Innovia prepared a unique mid-block water legislation dossier (dossier loi sur l'eau) on behalf of developers

Development of urban shallow groundwater geother

- Urban development zone (ZAC) regulations
- **Binding environmental Terms of Reference:**
 - Deeds of sale
 - Connection agreements

congre

 \rightarrow Decision aid tool

3D groundwater thermal modelling

ightarrow Decision aid tool

Monitoring

- 23 observation bore-holes
- GW level, T°, Cond.
- Monthly T° log
- Since 2015: automatic recorders

ightarrow Decision aid tool

Monitoring

- 23 observation bore-holes
- GW level, T°, Cond.
- Monthly T° log
- Since 2015: automatic recorders

ightarrow Decision aid tool

3D groundwater thermal modelling

Hydraulic topics

- 3 geological layers
- Drainage/sewerage network,
- Diaphragm walls, ...
- Feflow code

25-29

congre

ightarrow Decision aid tool

3D groundwater thermal modelling

Thermal boundary conditions

- Initial aquifer temperature
- Variation of river temperature
- Ground temperature
- Open loop systems

Aquifer thermal characteristics

N°2158

21

ightarrow Decision aid tool

3D groundwater thermal modelling

September 2016

Montpellier,

AH

congress

22

 \rightarrow Decision aid tool

3D groundwater thermal modelling

September 2016

Montpellier, Fra

AH

congress

23

Case Study: Cambridge District

Case Study: Cambridge District

Assessment of several potential solutions

End of summer temperature

- Pumping wells
- Reinjection wells
 - Recirculation of groundwater

25-29^t

September 201

43

congress

Case Study: Cambridge District

Selected solution:

- 70 pumping wells
- 1 common discharge network
- 2 outlets to Isère River
- Discharge : 1900 m³/h
- Heating + hot water
- Cooling ("free-cooling mode")

43

25-29

Case Study: Cambridge District

Case Study: Cambridge District (s.l.) **Thermal Impact** Final situation(august) Final situation (march) 43rc 25-29th 28 AR September 201 N°2158 Passion & Solutions congres

Development of sustainable geothermal use (within an urban context):

possible with a <u>single player</u> bringing :

- \rightarrow A long term district level vision
- → A consistent approach (governance & decision aid tool)
- \rightarrow Motivation

G. Gaultier¹, M. Boisson¹, R. Vigouroux¹ & F. Izoard²

N°2158

1: Artelia Eau et Environnement, Echirolles, France 2: SEM Innovia, Grenoble, France

European Synchrotron Research Facility

The European Synchrotron Radiation Facility (ESRF) provides beams of intense X-rays

ESRF is very sensitive to ground movements