

Assessments of groundwater recharge in the hyperarid Tarapaca alluvial fan (Northern Chile) at various scales of time and space

Benoit Viguier¹, **Hervé Jourde**¹, Guillaume Favreau¹, Véronique Leonardi¹, Claudio Moya², Elias Líra³, Gonzalo Yáñez³, Elisabeth Lictevout⁴, Véronique de Montety¹, Christelle Batiot-Guilhe¹, Tiaren García-Pérez³, José Maringue ³

¹ Hydrosciences Montpellier, UMR 5569 CNRS-IRD-UM

- ² CIDERH (Centro de Investigación y Desarrollo en Recursos Hídricos), Iquique, Chile
- ³ Pontificia Universidad Católica de Chile, Santiago, Chile

⁴ Centro Tecnológico de Hidrología Ambiental (CTHA) - Universidad de Talca, Talca, Chile

Location of the study area

- South America, north of Atacama Desert
- Central depression of Northern Chile
- Pampa del Tamarugal: endorheic depression (~ 1000 m asl)

Location of the study area

- South America, north of Atacama Desert
- Central depression of Northern Chile
- Pampa del Tamarugal: endorheic depression (~ 1000 m asl)

- Rainfall ~ 0 mm/year in Pampa del Tamarugal and < 2000 m asl
- Evapotranspiration ~ 2000 mm/year
- Precipitations up to 250 mm in the precordillera (> 3000m asl)

Water Demand in Northern Chile

Mainly covered by the extraction of groundwater from regional-scale aquifers

 Pampa del Tamarugal Aquifer (present day water demand > 130 Mm³.year⁻¹)

Water Demand in Northern Chile

- Mainly covered by the extraction of groundwater from regional-scale aquifers

 Pampa del Tamarugal Aquifer (present day water demand > 130 Mm³.year ⁻¹)
- Current and future water budgets highlight an important deficit that may attain 80% in 2025 for Northern Chile (*World Bank, 2011; Valdés-Pineda et al., 2014*)

Pampa del Tamarugal Aquifer

Morphotectonic and climatic context

Morphotectonic and climatic context

FP : Forearc Precordillera ; WC : Western Cordilera ; EC : Eastern Cordillera ; SS : Subandean Sierras

High precipitation between December and March in the Precordillera (>3000m)

High stream discharge correlated with ENSO index $< 0 \rightarrow$ La Nina events (Invierno Boliviano)

Standardized discharge index

Present day groundwater recharge ?

- No precipitation over the aquifer
- Floods during la Nina events
- Flooded area ?

Alluvial Fans

→ Zone of Heterogeneous deposits corresponding to complex sedimentary processes

Alluvial Fans

→ Zone of Heterogeneous deposits corresponding to complex sedimentary processes

Gullies and apex of alluvial fan

Alluvial Fans

→ Zone of Heterogeneous deposits corresponding to complex sedimentary processes

16000

Alluvial Fans

420000

10000

430000

440000

→ Zone of Heterogeneous deposits corresponding to complex sedimentary processes

450000

Alluvial Fans

→ Zone of Heterogeneous deposits corresponding to complex sedimentary processes

 Well JICA-D : General decrease of groundwater level of ~ 0.072 m.year⁻¹ during the last 15 years

Flow modeling in the vadose zone

Recharge of the aquifer depends on :

- Hydroclimatic forcing (Flood duration, return period of floods, ET, ...)
- Heterogeneity of sedimentary layers within the unsaturated zone → Control of water-retention parameters and hydraulic conductivity

Flow modeling in the vadose zone

Recharge of the aquifer depends on :

- Hydroclimatic forcing (Flood duration, return period of floods, ET, ...)
- Heterogeneity of sedimentary layers within the unsaturated zone → Control of water-retention parameters and hydraulic conductivity

Numerical solution of Richards equation - Hydrus-1D

- Sampling in gullies and floodplain \rightarrow Pedotransfer function (Rosetta Model) to estimate the van Genuchten (1980) water-retention parameters (Schaap et al., 2001) \rightarrow Comparison with in situ measurement of Ks
- Analysis of various scenarios (Flooding duration, Surface water depth, ET)

Θ[-]: water content; Θr [-]: residual water content; Θs [-]: saturated water content; h [cm]: pressure head; K [cm/day]: hydraulic conductivity; Ks [cm/day] saturated hydraulic conductivity; hg [cm]: capillary fringe depth; m [-] shape parameter = 1-1/n

Hydrus 1D - model set up

96 nodes and up to 18 types of sedimentary layer classified on the basis of the shape parameter (n) and Ks (Wang et al, 2009)

Boundary conditions

Model initialisation

ET = 5mm/day during 10 years after flooding

Model initialisation

ET = 5mm/day during 10 years after flooding

Model initialisation

ET = 5mm/day during 10 years after flooding

Flow modeling in the flood plain

Slight increase of cumulated fluxes (recharge) for higher surface water depth

Recharge increases with flood duration

Flow modeling in the flood plain

Various flooding durations (0.5 \rightarrow 10 days)

Flow modeling in the flood plain

Various flooding durations (0.5 \rightarrow 10 days)

Apparent groundwater age based on ¹⁴C activities

- (pmc= percent of modern carbon)
- Well Pz de la Muerte > 1950
- Well JICA-C ≈ 3500 4000 year BP
- Well JICA-D \approx 14500 15000 year BP

Apparent groundwater age based on ¹⁴C activities

- (pmc= percent of modern carbon)
 Well Pz de la Muerte > 1950
- Well JICA-C ≈ 3500 4000 year BP
- Well JICA-D ≈ 14500 15000 year BP

In agreement with paleoclimatic variation and wet phases influenced by high altitude lakes

Placzek et al., 2011; Sáez et al., 2016 ; Google Earth view

Apparent groundwater age based on ¹⁴C activities

- (pmc= percent of modern carbon)
 Well Pz de la Muerte > 1950
- Well JICA-C ≈ 3500 4000 year BP
- Well JICA-D ≈ 14500 15000 year BP

In agreement with paleoclimatic variation and wet phases influenced by high altitude lakes

Placzek et al., 2011; Sáez et al., 2016 ; Google Earth view

Wet phases during the last 20000 years:

- Tauca phase ≈ 18 000 14 000 years BP
- Coipasa phase \approx 13 000 10 000 years BP
- Early Holocene ≈ 8 500 9 700 years BP
- Late Holocene ≈ 4 700 years up to present day?

Return to dry conditions since 700 years BP

Apparent groundwater age based on ¹⁴C activities

- (pmc= percent of modern carbon)
- Well Pz de la Muerte > 1950
- Well JICA-C ≈ 3500 4000 year BP
- Well JICA-D ≈ 14500 15000 year BP

Positive concentrations of CFC-11 and CFC-12 measured in groundwater \rightarrow Recent recharge

Low concentration \rightarrow Low proportion of recent infiltrated water (1940 - present day) mixed with older groundwater

→ Confirmed by ³H measurements in JICA-C and JICA-D

Apparent groundwater age based on ¹⁴C activities (pmc= percent of modern carbon)

- Well Pz de la Muerte > 1950
- Well JICA-C ≈ 3500 4000 year BP
- Well JICA-D ≈ 14500 15000 year BP

→ Paleorecharge and present day mountain front recharge

Positive concentrations of CFC-11 and CFC-12 measured in groundwater \rightarrow Recent recharge

Low concentration \rightarrow Low proportion of recent infiltrated water (1940 - present day) mixed with older groundwater

 \rightarrow Confirmed by ³H measurements in JICA-C and JICA-D

Conclusion

Groundwater recharge at various scale of time

- Paleo recharge : Pleistocene and Late Holocene periods → Fossil groundwater
- Event scale : floods events → localized mountain front recharge evidenced by hydrodynamic analyses and environmental tracers
- Steady state recharge (surface flow losses)

Groundwater recharge at various scale of space

- **High** recharge at the **apex** areas (>> cm up to m.day⁻¹)
- Low or nil recharge in flood plain at the alluvial fan's end

Conclusion

Groundwater recharge at various scale of time

- Paleo recharge : Pleistocene and Late Holocene periods → Fossil groundwater
- Event scale : floods events → localized mountain front recharge evidenced by hydrodynamic analyses and environmental tracers
- Steady state recharge (surface flow losses)

Groundwater recharge at various scale of space

- **High** recharge at the **apex** areas (>> cm up to m.day⁻¹)
- Low or nil recharge in flood plain at the alluvial fan's end
- Medium to significant recharge in the alluvial fan close to network of gullies (a few mm.year⁻¹)

Remaining questions

- Flooding duration ?
- Size of flooded area ?
- 4 events in 15 years, only one "efficient flood" ?

Come and meet Benoit at 4.40 p.m \rightarrow E-poster session 6.03