

43rd IAH CONGRESS 25-29th September, 2016 Montpellier, France

Session 8.03 - Geometrical structure and hydrogeological properties of Hard-Rock aquifers

Characterizing Complex Aquifers Using Flow Dimension Diagnostic Sequences

Silvain Rafini, Romain Chesnaux, Anouck Ferroud

CERM – Groupe R2Eau Université du Québec à Chicoutimi, Québec, Canada

Fonds de recherche Nature et technologies Ouébec 🔹

Centre d'études sur les ressources minérales UQAC

Université du Québec à Chicoutimi

Definitions

Radial flow regime is defined by the transient growth of the cross-flow area A(r)

<u>Theis</u>

Non-Theis

Radial flow means *A*(*r*) ~ *r*

→Occurs in normal diffusion regime $r(t) \sim t^{0.5}$ (see Rafini and Larocque, 2009)

« **Complex** » aquifer means irregular, non-Theisian, heterogeneous, discontinuous etc.

Elliptical (homogeneous anisotropic aquifer) $A(r) \sim r \rightarrow \text{Radial}$

Any shape (heterogeneous aquifer) A(r) ~ r → Radial tc.

Background: diagnostic plots approach

- Developed by petroleum researchers to model complex reservoirs behavior
- Based on the log-derivative analysis
- Fundamental publications: Chow (1952); Tiab and Kumar (1980); Bourdet et al. (1983); Mattar and Zaoral (1992)

Review papers: Kruseman and de Ridder (1994); Verweij (1995); Bourdet (2002); Gringarten (2008); Renard (2009)

Many other models: Neuman's leaky aquifer, unconfined aquifer, partially penetrating well, large diameter well, wedge-shaped aquifers, finite-conductivity vertical fracture (dyke) etc.

Two stages interpetation:

- 1. Qualitative diagnostic: selecting the adequat theoretical model based on the resemblance of real data with theoretical type-curves
- **2. Quantitative diagnostic:** calculating the specific hydraulic properties using the equations of the selected model
- Very common in petroleum works
- In hydrogeology: still resticted to theoretical works, should be used in routine applications

Questionable uniqueness of interpretations

In many cases, several theoretical models may fit on a single real dataset...

Tiab (1989, 1993 a, b, c, d) Society of Petroleum Engineers

SPE 26138

Analysis of Pressure and Pressure Derivative without Type-Curve Matching - III. Vertically Fractured Wells in Closed Systems

Djebbar Tiab, U. of Oklahoma

SPE Member

Tiab (1995) Petroleum Science & Engineering

PETROLEUM SCIENCE & ENGINEERING

Journal of Petroleum Science and Engineering 12 (1995) 171-181

Analysis of pressure and pressure derivative without type-curve matching — Skin and wellbore storage

Djebbar Tiab School of Petroleum and Geological Engineering. The University of Oklahoma, 100 East Boyd Street, T301 SEC, Norman, OK 73019-0628. USA

Mattar (1999) J. of Canadian Petroleum Technology

<u>Other papers:</u> Tiab (2005); Escobar et al (2004, 2007, 2010, 2012); Escobar and Montealegre (2007); Gringarten (2008)

Straight lines analysis: an alternative to the type-curves method

 Flow regimes form successive <u>straight</u> <u>segments</u> of the log-derivative signal

 More robust segmentation. Yet the recognition of a straight segment, and the distinction of a settled flow regime from a transitional stage between two flow regimes, remains critical

> → Practical guideline: slope p should be stable over at least one log-cycle (Beauheim and Walker, 1998), not consensual...

Flow dimension theory

Barker (1988):

stable log-derivative slope *p* = hydrodynamically **settled** flow regime

This flow regime is governed by the **fundamental relationship** $A(r) \sim r^{n-1}$ where A(r) is the cross-flow area and *n* is the flow dimension

n is obtained by a **direct** reading of the log-derivative slope p : n = 2 - 2(p)

(for large u, i.e., large t or small r \rightarrow at the source, practically from pumping test's beginning)

Flow regimes

Focus is on values of *n* we do understand

Radial n = 2

Non-radial n = 0, 1, 1.5, 3, 4

Log (elapsed time)

Rafini et al (in prep.) modified from Ehlig-Economides et al (1994)

In the real world...

The flow dimension time-variant in 80 % of real aquifer responses to pump tests
 Specific values of n = 2, n = 1, n = 1.5 and n = 3 are the most frequently reported

→Complex signatures combining elementary behaviours (linear, bilinear, radial, spherical)

→ Non-trivial interpretation

These changes express changes in the hydrodynamic conditions as the front pulse propagates

- Flow regimes independently relate to successive hydraulic objects
 → Segments are interpreted independently
- ...or reflect transient interactions between hydraulic objects with contrasting properties (K, Ss, topological dimension)
 - → Combinations are meaningful

Database : region of Mirabel (Québec) CGC-Québec (Nastev et al, 2004) Rafini (2009)

Review of flow dimension sequences associated to known conceptual models

(1)Tiab, 2005; (2) Linear no-flow frontier: (3) Theis (1935), Cooper et Jacob (1949); (4) Beauheim and Walker (1998); (5) Cinco-Ley et al (1978) (6) Gringarten et Ramey (1974, 1975): (7) Massonat et al 1993; (8) Miller (1962; Nutakki and Mattar 1982 ; Escobar et al, 2012; Escobar et al, 2007; (9) Escobar et al (2004), **Escobar and Montealegre** (2007); (10) Cinco-Ley et Samaniego (1981): (11) Rafini et Larocque (2009); (13) Rafini and Larocque (2012);(14) Abbazsadeh et Cinco-Lev (1995): (15) Rafini et al (accepted); (16) Neuman et Witherspoon (1969);(17) Ferroud et al (2016); (18) Hantush (1956), Hanush (1960);(19) Barker (1988).

Example 1: flow regimes independently relating to successive hydraulic objects (boundaries)

> Numerical simulation of a point source into an elongated aquifer (homogeneous isotropic medium)

Evolution of n during the pumping test : *scan* of hydraulic conditions in the aquifer

```
n sequence : 3 – 2 – 1 – inf
(sperical – radial – linear – inf)
```


3D numerical flow simulation performed with Hydrogeosphere (Therrien and Sudicky, 1996)

Example 2: flow regimes sequences reflecting **transient interactions between hydraulic** objects with contrasting properties (K, Ss, topological dimension)

n = 1.5 is produced by a conductive fault into an aquifer (Cinco-Ley et al, 1981; Rafini and Larocque, 2009); fault: tabular (2D), high K, low Ss; matrix: 3D, low K, high Ss

- **1.5 (2)** → the fault is **practically vertical**
- $2 1.5 (2) \rightarrow$ the fault is **inclined**

(2) $-4 - 1.5 - 2 \rightarrow$ the fault is **not connected to the wellbore (not intercepted)**

\rightarrow *n* = 1.5: diffusion slow-down in the fault, due to water supply from the matrix

Example 2: flow regimes sequences reflecting **transient interactions between hydraulic** objects with contrasting properties (K, Ss, topological dimension)

n = 1.5 is produced by a conductive fault into an aquifer (Cinco-Ley et al, 1981; Rafini and Larocque, 2009); fault: tabular (2D), high K, low Ss; matrix: 3D, low K, high Ss

- 1.5 (2) \rightarrow the fault is practically vertical
- $2 1.5 (2) \rightarrow$ the fault is inclined

 $(2) - 4 - 1.5 - 2 \rightarrow$ the fault is not connected to the wellbore (not intercepted)

Larocque

(2012)

- Radially symmetric slow-down diffusion in the fault DOES NOT generate fractional 1.5 flow but a radial fault-related flow
- Unidirectional slow-down diffusion in the fault DOES generate fractional 1.5 fault-related flow
- \rightarrow Only faults with significant <u>inclination</u> are prone to produce an early radial fault-related regime

Example 2: flow regimes sequences reflecting **transient interactions between hydraulic** objects with contrasting properties (K, Ss, topological dimension)

n = 1.5 is produced by a conductive fault into an aquifer (Cinco-Ley et al, 1981; Rafini and Larocque, 2009); fault: tabular (2D), high K, low Ss; matrix: 3D, low K, high Ss

- 1.5 (2) \rightarrow the fault is practically vertical
- $2 1.5 (2) \rightarrow$ the fault is inclined

(2) $-4 - 1.5 - 2 \rightarrow$ the fault is not connected to the wellbore (not intercepted)

Theoretical model of a notconnected vertical finiteconductivity fault: Abbaszadeh and Cinco-Ley (1995); Rafini and Larocque (2009)

Thank you

Financial support partners

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Fonds de recherche Nature et technologies Québec 🏘 🛊