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Definitions

Cylindrical

(homogeneous isotropic aquifer)

Elliptical

(homogeneous anisotropic aquifer) 

Any shape (heterogeneous aquifer)

Radial flow regime is defined by the transient growth of the cross-flow area  A(r)

Theis Non-Theis

A(r) ~ r Radial

A(r) ~ r

 Radial

A(r) ~ r  Radial

Radial flow means A(r) ~ r

Occurs in normal diffusion regime r(t) ~ t 0.5 

(see Rafini and Larocque, 2009)

r(t) ~ t 0.5

r(t) ~ t 0.5

« Complex » aquifer means irregular, non-

Theisian, heterogeneous, discontinuous etc.



Background: diagnostic plots approach

• Developed by petroleum researchers to model complex reservoirs behavior

• Based on the log-derivative analysis

• Fundamental publications: Chow (1952); Tiab and Kumar (1980); Bourdet et al. (1983); 

Mattar and Zaoral (1992)

Log-derivative

Drawdown

Two stages interpetation: 

1. Qualitative diagnostic: selecting the adequat theoretical

model based on the resemblance of real data with

theoretical type-curves

2. Quantitative diagnostic: calculating the specific hydraulic

properties using the equations of the selected model

Review papers: Kruseman and de Ridder (1994); Verweij

(1995); Bourdet (2002); Gringarten (2008); Renard (2009)

Many other models: Neuman’s leaky aquifer, unconfined aquifer, 

partially penetrating well, large diameter well, wedge-shaped aquifers, 

finite-conductivity vertical fracture (dyke) etc.

• Very common in petroleum works

• In hydrogeology: still resticted to theoretical works, 

should be used in routine applications

 Questionable uniqueness of interpretations

In many cases, several theoretical models may fit on 

a single real dataset…



Escobar et al, 2004

Straight lines analysis: 

an alternative to the type-curves

method

• Flow regimes form successive straight 
segments of the log-derivative signal

Other papers: Tiab (2005); Escobar et al (2004, 2007, 2010, 

2012); Escobar and Montealegre (2007); Gringarten (2008)

Tiab (1995) Petroleum Science & Engineering

Tiab (1989, 1993 a, b, c, d) Society of Petroleum Engineers

Mattar (1999) J. of Canadian Petroleum Technology

Slope

p = 1 

p = 0

? 
p = 0.25 

Transi

-tion

• More robust segmentation. Yet the 

recognition of a straight segment, and the 

distinction of a settled flow regime from a 

transitional stage between two flow 

regimes, remains critical

 Practical guideline: slope p should be stable 

over at least one log-cycle (Beauheim and 

Walker, 1998), not consensual…



Flow dimension theory

Barker (1988): 

stable log-derivative slope p = hydrodynamically settled flow regime

This flow regime is governed by the fundamental relationship A(r) ~ r n-1

where A(r) is the cross-flow area and n is the flow dimension

Derivative data

n = 2

n is obtained by a direct 

reading of the log-derivative

slope p : 

n = 2 - 2(p)

(for large u, i.e., large t or small r 

 at the source, practically from

pumping test’s beginning))



Focus is on values of n we do understand

Radial n = 2

Non-radial n = 0, 1, 1.5, 3, 4

Flow regimes

Rafini et al (in prep.) 

modified from Ehlig-Economides et al (1994)

Flow regimes



Out of 41 pumping test…
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In the real world…
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Multi-stage

Single stage

 The flow dimension time-variant in 80 % of real 

aquifer responses to pump tests

 Specific values of n = 2, n = 1, n = 1.5 and n = 3 

are the most frequently reported

These changes express changes in the 

hydrodynamic conditions as the front pulse 

propagates 

1. Flow regimes independently relate to 

successive hydraulic objects

 Segments are interpreted independently

2. …or reflect transient interactions between 

hydraulic objects with contrasting properties (K, 

Ss, topological dimension) 

 Combinations are meaningful

Complex signatures combining elementary 

behaviours (linear, bilinear, radial, spherical)

 Non-trivial interpretation



(1)Tiab, 2005; 

(2) Linear no-flow frontier;

(3) Theis (1935), Cooper et 

Jacob (1949);

(4) Beauheim and Walker 

(1998); 

(5) Cinco-Ley et al (1978)

(6) Gringarten et Ramey (1974, 

1975); 

(7) Massonat et al 1993; 

(8) Miller (1962; Nutakki and 

Mattar 1982 ; Escobar et al, 

2012; Escobar et al, 2007; 

(9) Escobar et al (2004), 

Escobar and Montealegre

(2007) ; 

(10) Cinco-Ley et Samaniego

(1981); 

(11) Rafini et Larocque (2009); 

(13) Rafini and Larocque

(2012); 

(14) Abbazsadeh et Cinco-Ley 

(1995); 

(15) Rafini et al (accepted); 

(16) Neuman et Witherspoon 

(1969); 

(17) Ferroud et al (2016); 

(18) Hantush (1956), Hanush

(1960); 

(19) Barker (1988).R
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Review of flow 
dimension 
sequences
associated to 
known conceptual
models

Linear, dual linear, radial + linear

Double radial with positive or 
negative offset

Spherical combinations

Bilinear combinations

Following slides



Evolution of n during the 

pumping test : scan of 

hydraulic conditions in the 

aquifer

3D numerical flow simulation performed with Hydrogeosphere (Therrien and Sudicky, 1996)

Numerical simulation of a 

point source into an 

elongated aquifer
(homogeneous isotropic

medium)

n sequence : 3 – 2 – 1 – inf

(sperical – radial – linear – inf)

Example 1:  flow regimes 

independently relating to 

successive hydraulic

objects (boundaries) 

A(r) ~ r2

A(r) ~ r A(r) ~ r 0 = const.



n = 1.5 is produced by a conductive fault into an aquifer (Cinco-Ley et al, 1981; Rafini

and Larocque, 2009); fault: tabular (2D), high K, low Ss; matrix: 3D, low K, high Ss

1.5 – (2)  the fault is practically vertical

2 – 1.5 – (2)  the fault is inclined

(2) – 4 – 1.5 – 2  the fault is not connected to the wellbore (not intercepted)

Example 2:  flow regimes sequences reflecting transient interactions between 

hydraulic objects with contrasting properties (K, Ss, topological dimension) 

rm

rfA

rfB

 n = 1.5: diffusion slow-down in the fault, due to water supply from the matrix

3D numerical simulation (Rafini and Larocque, 2009)



n = 1.5 is produced by a conductive fault into an aquifer (Cinco-Ley et al, 1981; Rafini

and Larocque, 2009); fault: tabular (2D), high K, low Ss; matrix: 3D, low K, high Ss

1.5 – (2)  the fault is practically vertical

2 – 1.5 – (2)  the fault is inclined

(2) – 4 – 1.5 – 2  the fault is not connected to the wellbore (not intercepted)

Example 2:  flow regimes sequences reflecting transient interactions between 

hydraulic objects with contrasting properties (K, Ss, topological dimension) 

• Radially symmetric slow-down diffusion in the fault DOES NOT generate fractional 1.5 flow but a radial 

fault-related flow

• Unidirectional slow-down diffusion in the fault DOES generate fractional 1.5 fault-related flow

Only faults with significant inclination are prone to produce an early radial fault-related regime

Radial 

fault-related regime

Fractional 1.5 

fault-related regime

Radial matrix-related regime

Late time

n = 1.5n = 2
n = 2
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Rafini and 

Larocque 
(2012)



n = 1.5 is produced by a conductive fault into an aquifer (Cinco-Ley et al, 1981; Rafini

and Larocque, 2009); fault: tabular (2D), high K, low Ss; matrix: 3D, low K, high Ss

1.5 – (2)  the fault is practically vertical

2 – 1.5 – (2)  the fault is inclined

(2) – 4 – 1.5 – 2  the fault is not connected to the wellbore (not intercepted)

Example 2:  flow regimes sequences reflecting transient interactions between 

hydraulic objects with contrasting properties (K, Ss, topological dimension) 

Pulido et al (2003)

Theoretical model of a not-

connected vertical finite-

conductivity fault: 

Abbaszadeh and Cinco-Ley 

(1995); Rafini and Larocque

(2009)

Early matrix-related

radial flow stage (before

the fault is reached)

Transitional

n = 4 stage



Bourdet’s

correction for 

random noise

Flow regimes

description

Conceptual model 

interpretationSettings

Drawdown

semilog plot

Drawdown log-

derivative bilog plot

Adjust begining

and ending time

Flow 

dimension 

value

Adjust the slope

Segment #1

Segment #2

Segment #3

Segment #4

Adjust the vertical 
offsets on semilog plot

GRF 

normalization

SIREN: in progress interface 
dedicated to sequential analysis

n = 4 n = 1.5 n = 2 n = 0

Interpretation: this aquifer is governed by a transmissive steep fault Tf = 5.86x10-3 m2/s in the 

vicinity of the wellbore (not intercepted), embedded into a transmissive matrix Tm = 9.49x10-4m2/s

+

Late time: closed reservoir = impermeable barriers… (in all directions?)

Simultaneous manual
fit on bilog plot and 

semilog plot
Adjust the vertical 
offsets on bilog plot
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