Poroelastic responses to terrestrial water loading in the Bengal Aquifer System provide high-resolution, in-situ measurements for comparison with GRACE

The Bengal Basin

The Bengal Aquifer System: fluvio-deltaic sand, silt and clay

Burgess et al 2010 Nature Geoscience 3, 83-87

BWDB national 'water table' monitoring network

BAS - deep groundwater conditions are uncertain

Burgess et al. 2010

BAS 'nested' piezometers - ca 100, 200, 300 m depth

BAS 'nested' piezometers - ca 100, 200, 300 m depth

BAS heads respond to mechanical loading by tides

BAS 'nested' piezometers - ca 100, 200, 300 m depth

BAS heads at an inland site, distant from pumping

BAS heads at an inland site, distant from pumping

BAS heads respond to mechanical loading by monsoon inundation, as daily rainfall events

BAS heads respond to mechanical loading by inundation over a monsoon season

Natural Resources Research , Vol. 9, No. 2. 2000

Natural Geological Weighing Lysimeters: Calibration Tools for Satellite and Ground Surface Gravity Monitoring of Subsurface Water-Mass Change

W. E. Bardsley^{1,2} and D. I. Campbell¹

"Alluvial plains in monsoonal climates may serve a calibration role here, with possible candidate regions being the Ganges River basin and the plains of northern China. In the US, the State of Illinois also has been suggested as a possible calibration region (Rodell and Famiglietti, 1999b). Geological weighing lysimeters ... could be set up for local verification of estimated water-mass changes at representative sites."

M. Hoque 2010 UCL PhD thesis

Models for managing the deep aquifer in Bangladesh

Michael & Voss 2008 PNAS Sustainability of deep groundwater pumping

Hoque & Burgess 2010 *Jour. Hydrology* ¹⁴C dating of deep groundwater in BAS aquifer anisotropy

BAS heads respond to mechanical loading by monsoon inundation

 $\frac{\partial h}{\partial t} =$

 $\frac{\partial \sigma_T}{\partial t}$

compression, mechanical

BAS - 'nested' piezometers - 100, 200, 300 m depth

BAS heads increase over a monsoon period as the terrestrial water mass, ΔTWS_m accumulates

BAS heads increase over a monsoon period as the terrestrial water mass, ΔTWS_m accumulates

CTG Anwara

weeks, from 17 Feb 2012

Monsoon season ΔTWS_m accumulation (m): 2012, 2013


```
ΔTWS<sub>m</sub> 2012, 2013
```

Accumulated flooding depth May-Sept 2007

Shamsudduha et al 2011

 ΔTWS_{m}

EGSIEM.eu 0.51 m (2013)

Shamsudduha et al. Steckler et al. 0.49 – 0.75 m (2003 – 2007)

Geo-lysimetry maps ΔTWS_m within a GRACE footprint:

GRACE – lysimetry apparent discrepency

- accuracy of the geolysimetry analyses of ΔTWS ?
- representative lysimetry sites?
- spatial variation of ΔTWS across the basin ?
- spatial distribution of ΔTWS affects GRACE interpretation ?
- systematic under-representation of ΔTWS by GRACE ?

Poroelastic responses to terrestrial water loading in the Bengal Aquifer System provide high-resolution, in-situ measurements for comparison with GRACE

