Groundwater-related environmental phenomena in complex geologic setting of the Tihany Peninsula, Hungary

<u>Ádám Tóth</u>*, Attila Galsa[#], Szilvia Simon*, Tímea Havril*, Fernando A. Monteiro Santos[×], Imre Müller*, Judit Mádl-Szőnyi^{*}

* József & Erzsébet Tóth Endowed Hydrogeology Chair, Eötvös Loránd University, Budapest, Hungary
 # Department of Geophysics & Space Sciences, Eötvös Loránd University, Budapest, Hungary
 × Institute Dom Luiz, University of Lisbon, Lisbon, Portugal

Endowed Hydrogeology Chair and Foundation

43rd IAH Congress 28th September 2016 Montpellier, France

1. Motivation

Flowing groundwater as environmental agent

Natural conditions and phenomena due to environmental agency of flowing groundwater in drainage basin (Tóth Á. et al. 2016 modified after Tóth J. 1999)

2. Aims of the study

Natural environmental phenomena → numerical simulation

Complex geologic framework and/or A priori information is restricted → geophysical measurements

Integrated model construction

 \rightarrow geologic-hydrogeologic-geophysical data

Groundwater flow model

- → depicting the **hierarchical** flow and **discharge pattern**
- → understanding the **environmental features**
- revealing the potential effect of climate change and anthropogenic activity

3. Study area

Topographic and geologic characteristics of the study area (a) Aerial photo of the Tihany Peninsula, Hungary, Europe (b) Geology along the cross section indicated in (a) (after Sacchi et al., 1999) (Tóth Á. et al. 2016)

3. Study area

Spatial distribution of wells of the Tihany Peninsula

Geologic data:

3. Workflow

- volcanological studies
- geologic maps, sections
- boreholes

Geologic data:

3. Workflow

- volcanological studies
- geologic maps, sections
- boreholes

Hydrogeologic data:

- pumping test
- water level
- potentiometers

Geologic data: **3. Workflow**

- volcanological studies
- geologic maps, sections ullet
- boreholes

Hydrogeologic data:

- pumping test \bullet
- water level \bullet
- potentiometers \bullet

Geophysical data:

- gravity
- geomagnetics ullet
- reflection seismics
- electromagnetics

3. Workflow

Flow chart of the applied scheme from applied electromagnetic methods via geophysical information to groundwater flow model input (Tóth Á. et al. 2016)

Geologic data: **3. Workflow**

8

- volcanological studies
- geologic maps, sections ullet
- boreholes

Hydrogeologic data:

- pumping test \bullet
- water level \bullet
- potentiometers \bullet

Geophysical data:

- gravity ullet
- geomagnetics \bullet
- reflection seismics ullet
- electromagnetics ullet

Field mapping:

- vegetation ightarrow
- slope instability
- springs

Numerical simulation:

- groundwater flow pattern
- groundwater flow systems ullet
- hydraulic connection

Geologic data: **3. Workflow**

- volcanological studies \bullet
- geologic maps, sections ullet
- boreholes

Hydrogeologic data:

- pumping test \bullet
- water level \bullet
- potentiometers \bullet

Geophysical data:

- gravity ullet
- geomagnetics ullet
- reflection seismics ullet
- electromagnetics ullet

Field mapping:

- vegetation
- slope instability
- springs

Numerical simulation:

- groundwater flow pattern
- groundwater flow systems ullet
- hydraulic connection

Geologic data: **3. Workflow**

0 0000000000000

- volcanological studies \bullet
- geologic maps, sections ullet
- boreholes

Hydrogeologic data:

- pumping test \bullet
- water level
- potentiometers igodol

Geophysical data:

- gravity ullet
- geomagnetics ullet
- reflection seismics ullet
- electromagnetics

Field mapping:

- vegetation
- slope instability
- springs

4. Results – Field mapping

Aerial photo of the Tihany Peninsula with the imprints of flowing groundwater

4. Results – Geophysical prospecting

Location of the geophysical measurements. (a) Schematic map of the Tihany Peninsula as a reference for b-d. Measurement sites in the vicinity of (b) the seasonal lake, (c) the permanent lake, 10

(d) the palustrine wetland (Tóth Á. et al. 2016)

4. Results – Geophysical prospecting

11

Resistivity maps indicating electrostratigraphic units based on RMT measurements for (a) the palustrine wetland, (b) the permanent lake, and (c) the seasonal lake (Tóth Á. et al. 2016)

4. Results – Groundwater flow model

Lithostratigraphic Unit				Electrostratigraphic Unit		Hydrostratigraphic Unit				
D	lithology	age	depositional environment	Ю	electrical resistivity ρ (Ωm)	ID	thickness d [m]	horizontal hydraulic conductivity K _h [m/s]	vertical hydraulic conductivity K _v [m/s]	effective porosity Φ[%]
LsU 11	deposit	Holocene	shallow lacustrine	EsU VI	<20	HsU I AT	10-15	10-7	10-8	15
LsU 10	clastic deposit	Pleisto-Holocene	deluvial, proluvial, eluvial	n.a.	n.a.		90	10-5	10-6	10
LsU 9	sandy gravel, siltstone	Mio-Pliocene	delta plain	EsU V		HsU H AF				
LsU 8	siltstone, sand	Mio-Pliocene	delta plain		~20					
LsU 7	clay marl	Mio-Pliocene	shallow lacustrine			HsU G AT	30	10-8	10 ⁻⁹	5
LsU 6	basaltic tuff	Mio-Pliocene	maar volcano	EsU IV	>35	HsU F AF	max. 60	5.10-6	5.10-7	10
LsU 5	pyroclastics	Mio-Pliocene	maar volcano	EsU III	20–35	HsU E AF	max. 200	10-6	10-7	10
LsU 4	limestone	Miocene	shallow marine	EsU II	60–80	HsU D AF	80	10-4	10-5	20
LsU 3	limestone, dolomite, marl	Triassic	carbonate platfrom, lagoon, shelf			HsU C AF	100	10-5	10-6	15
LsU 2	sandstone	Permian	alluvial fan	EsU I	>100	HsU B AF	500	10-6	10-7	10
LsU 1	shale	Silurian	hemipelagic marine	n.a.	n.a.	HsU A AT	500	10-9	10-10	5

Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information: units and their characteristics of the Tihany Peninsula based on boreholes, seismic section, electromagnetic survey, pumping tests and literature data (Tóth Á. et al. 2016)

4. Results – Groundwater flow model

Numerical simulation input of the hydrogeologic model (a) Boundary conditions and tracks of 2D cross sections (b) Hydrostratigraphic units and their geometry on block and fence diagram (Tóth Á. et al. 2016)

..........

13

4. Results - Groundwater flow model

Simulated flow field along 2D cross sections displaying intensity of flow by colours, and direction of flow by normalised 3D vectors for (a) seasonal lake-permanent lake, (b) palustrine wetland-seasonal lake, (c) permanent lake-palustrine wetland

Boundaries of regional hydrostratigraphic units (B AF, C AF, D AF, G AT and H AF) are indicated. (Tóth Á. et al. 2016)

4. Results – Groundwater flow model

0 -

..........

Hierarchical interpretation of simulated gravity-driven flow field displaying local and intermediate flow systems with their characteristic flow lines (Tóth Á. et al. 2016)

5. Discussion

Aerial photo of the Tihany Peninsula with the imprints of flowing groundwater

5. Discussion

Human impact

→ water demand cannot be supplied
→ high potential of contamination

Climate change → local flow systems mostly affected

→ wetlands are **extremely vulnerable**

Water management and policy

Thank you for your attention! Questions?

Scheme of integrated model construction

Groundwater flow pattern of a **geologically complex** area

6. Conclusion

18

Environmental imprints of groundwater

This lecture was based on:

Tóth Á, Havril T, Simon Sz, Galsa A, Monterio Santos F, Müller I, Mádl-Szőnyi J 2016: Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction Journal of Hydrology 539, pp. 330-344