

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems

Assessment of brine migration along vertical pathways due to CO₂ injection

> 43rd IAH CONGRESS 28th September Montpellier

> > Alexander Kissinger Vera Noack Stefan Knopf Holger Class

GEFÖRDERT VOM Bundesministerium

für Bildung und Forschung

Motivation

- Deep saline aquifers are an option for the storage of CO₂ or the disposal of waste water
- The injection of fluids causes an increase in pressure reaching far beyond the radius of the plume of the injected fluid

→ The prediction of leakage or pressure evolution requires the consideration of both large horizontal and vertical scales

What is the appropriate level of model complexity for describing brine displacement due to CO_2 injection?

- Challenges: Relevant physical processes, data uncertainty, and computational demand
- Different numerical and analytical approaches of varying complexity
- Approach: Investigate the effect of different model simplifications on large-scale leakage and pressure evolution due to CO₂ injection in a realistic geological model based on the North German Basin

Important features of the system characteristic to the North German Basin

Window in the Rupelian Clay

University of Stuttgart

Geological model

Data for layers

Layer	Lithology	Thickness	Porosity	Permeability	-
		լոոյ	[/0]	[m]]	_
Quaternary 1	sand, gravel	100	20	6×10^{-11}	shallow
Quaternary 2	sand, gravel	200	20	1×10^{-12}	aquifers
Tertiary post-Rupelian	sand, silt	400	15	1×10^{-13}	
Tertiary Rupelian	clay	80	10	1×10^{-18}	barrier
Tertiary pre-Rupelian	sand, sandstone	350	10	1×10^{-13}	intermediate
Cretaceous	chalk, claystone	900	7	1×10^{-14}	aquifers
Upper Buntsandstein	salt, anhydrite, claystone	50	4	1×10^{-18}	barrier
Upper Middle Buntsandstein	siltstone	20	4	1×10^{-16}	
Solling	sandstone	20	20	1.1×10^{-13}	injection
Lower Middle Buntsandstein	siltstone	110	4	1×10^{-16}	semi-
Lower Buntsandstein	clay- and siltstone	350	4	1×10^{-16}	permeable
Permian Zechstein	rock salt	-	0	0	layers
Fault zone	-	50	30	1×10^{-12}	

Vertical pathways

Focused leakage over fault zone

Diffuse leakage over barrier

Reducing complexity

CO₂ injection

- Two phase flow

- Salt transport

Reference

- Water injection
- Salt transport

No salt transport

- Water injection

Reducing complexity

Reference

- Realistic geometry
- Water injection
- Salt transport

Simplified geometry

- Stratified geometry
- Water injection
- Salt transport

Analytical solution

- after Zeidouni (2012)
- Water injection
- No salt transport
- No diffuse leakage

Salinity

Salinity

Zeidouni, M. (2012). Analytical model of leakage through fault to overlying formations. Water Resources Research, 48(12). http://doi.org/10.1029/2012WR012582

Numerical models: boundary and initial conditions

- Injection period 100 years 50 years injection + 50 years post-injection
- Constant injection rate of 0.5 Mt per year

Implementation in

Schwenck, N., Beck, M., Becker, B., Class, H., Fetzer, T., Flemisch, B., ... Weishaupt, K. (2015, September). DuMuX 2.8.0. doi:10.5281/zenodo.31611

University of Stuttgart

Diffuse and focused leakage scenario

Upper Buntsandstein barrier permeability: $k = 10^{-18} \text{ m}^2$

Importance of variable-density flow on pressure increase at the fault zone

Focused leakage scenario

Upper Buntsandstein barrier permeability: $k = 10^{-20} \text{ m}^2$

Importance of semi-permeable layers on leakage

Importance of semi-permeable layers on leakage

Injection horizon diffusivity:

$$D_{inj} = \frac{k}{\mu \phi C_{tot}}$$

Considering **only** the 20m thick Solling:

$$D_{inj} = 0.913$$

Vertical averaging of surrounding semi-permeable layers with the injection horizon Solling:

$$D_{inj} = 0.161$$

Summary and outlook

- If **leakage** into shallow aquifers is the target variable the model simplifications show acceptable agreement, especially when considering the uncertainty inherent to the hydrogeological parametrization
- The **semi-permeable layers** embedding the injection horizon Solling are an important component of the system significantly influencing the leakage rates
- The prediction of **pressure increase** near the fault zone is very sensitive to model assumptions, especially variable-density flow
- **Outlook:** Results can give valuable input for the design of a **basin-scale model** of the North German Basin including multiple CO₂ injection sites

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems

CO2BR

Acknowledgements:

This work was funded by the German Federal Ministry of Education and Research (**BMBF**) and the German Research Foundation (**DFG**) within the geoscientific research and development program **GEOTECHNOLOGIEN.**

Thank you!

Alexander Kissinger Vera Noack Stefan Knopf Holger Class

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Injection layer

Backup: Analytical solution

Importance of variable-density flow on pressure increase at fault zone

Diffusivity

Injection horizon diffusivity:

$$D_{inj} = \frac{k}{\mu \phi C_{tot}}$$

Considering only the 20m thick Solling:

$$D_{inj} = 0.913$$

Vertical averaging of surrounding semi-permeable layers with the injection horizon Solling:

$$\bar{\phi}_{inj} = \frac{\phi_{Sol}L_{Sol} + \phi_{Semi}L_{Semi}}{L_{Tot}}$$
$$\bar{k}_{inj} = \frac{k_{Sol}L_{Sol} + k_{Semi}L_{Semi}}{L_{Tot}}$$
$$D_{inj} = 0.161$$

