BEDROCK AQUIFER CHARACTERIZATION BASED ON UNDERGROUND MINE SITE INVESTIGATION: RESULTS AND OPPORTUNITIES

Alain ROULEAU¹, Emmanuelle B.GAGNÉ¹ Ali SAEIDI¹, Vincent CLOUTIER²

¹ Université du Québec à Chicoutimi (UQAC), Qué, Canada
² Université du Québec en Abitibi-Témiscamingue (UQAT), Amos Campus, Qué, Canada

MINING & MINE WORKINGS

We know

Impacts on

- Economy
- Environnement

We know less Research opportunities (fundamental and applied) on:

- Hydrogeological (H)
- Geomechanical (M)
- Geochemical (C)

phenomena

EFFECTS OF MINE DRAINAGE

Important gw pressure decrease and water table drawdown, except:

- very low-K rock mass
- constant-head surface boundary, e.g. a lake

SUMMARY

1. HYDRO-MECHANICAL (H-M) PROCESSES

- 2. HYDRO-CHEMICAL PROCESSES (H-C)
- 3. REGIONAL HYDROGEOLOGICAL STUDY
- 4. CONCLUSION

HYDRO-MECHANICAL (H-M) PHENOMENA

An excavation induces variations on:

Effects of σ_N & τ

- Numerous studies on the effect of normal stress variation (σ_N) on fracture transmissivity (T_f)
- Effects of shear stress (τ) variation is even more important: Important T_f Î (x10² +) for small shear displacement (≈ 1 mm), even before shear failure

(E. Lamontagne, 2001)

FURTHER QUESTIONS

- Field *vs* laboratory
- Incorporating in simulation models
 - Stress disturbance around boreholes

SUMMARY

- 1. HYDRO-MECHANICAL (H-M) PROCESSES
- 2. HYDRO-CHEMICAL PROCESSES (H-C)
- 3. REGIONAL HYDROGEOLOGICAL STUDY
- 4. CONCLUSION

HYDRO-GEOCHEMICAL PHENOMENA AROUND MINE WORKINGS

Hydrochemical & isotopic zoning

 Effects of hydrochemistry on rock mass permeability

HYDROCHEMICAL ZONING

sulfide-rich tailings

sulfide-rich tailings

sulfide-rich tailings

 pH 2 -> *T_F* increases (calcite diss., channelling)
pH 2.5 to 4 -> *T_F* decreases (oxy-hydroxyde precip.) (A. Benlahcen, 2003)

sulfide-rich tailings

Sequencial phenomena ?

Process kinetics

SUMMARY

- 1. HYDRO-MECHANICAL (H-M) PROCESSES
- 2. HYDRO-CHEMICAL PROCESSES (H-C)
- 3. REGIONAL HYDROGEOLOGICAL STUDY
- 4. CONCLUSION

In spite of important disturbances on geomechanical stress field, hydrochemistry and groundwater flow system

- Mine workings provide:
 - Good observation windows for fractured rock aquifers
 - Numerous sampling points for groundwater

 long-duration « pumping test » data from mine dewatering operation

(E. B.Gagné, 2014)

In spite of disturbances on geomechanical stress field, hydrochemistry and groundwater flow system

- Important input in regional hydrogeological characterization
- Particularly in region with limited rock outcrops, *e.g.* Precambrian *Canadian Shield*

(E. B.Gagné, 2014)

CONCLUSION

Mine workings

Excavation and drainage

Hydrogeological (H), geomechanical (M)

and hydrogeochemical (C) disturbances

Studies on H-M-C coupling phenomena

 Access to fractured rock aquifers and groundwater sampling points

Important input in regional hydrogeological characterization

Period of increasing mineral resources extraction

Thanks to

- Fonds de recherche québécois sur la nature et les technologies (FRQNT)
- Coworkers & students
 - Eric Lamontagne, Abdel Benlahcen
 - Ian D. Clark & M. Douglas
 - Guy Archambault, Jayanta Guha, Jacques Carignan
 - Denis W. Roy, Amélia J. Fernandes, Romain Chesnaux

Thank you for your attention

