

Institut de recherche pour le développement

Groundwater recharge and trends :

comparative analysis of sedimentary and basement aquifers in Benin

Results obtained thanks to GRIBA project

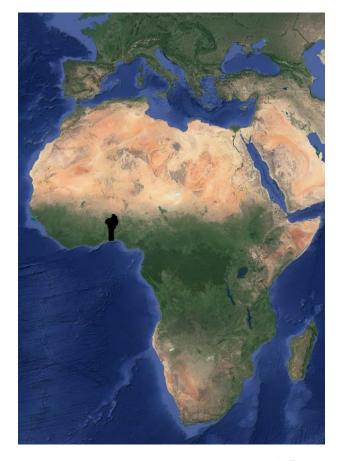
KOTCHONI, V., VOUILLAMOZ, J.M., BOUKARI, M., LAWSON, F.M.A., ADJOMAYI, P., TAYLOR, R.G.

Université d'Abomey-Calavi/Institut National de l'Eau, Abomey-Calavi, Benin

Institut de Recherche pour le Dévelopement, IRD, Grenoble, France

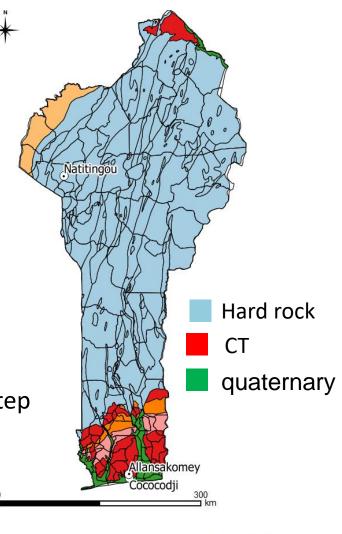
PROTOS, Cotonou, Benin

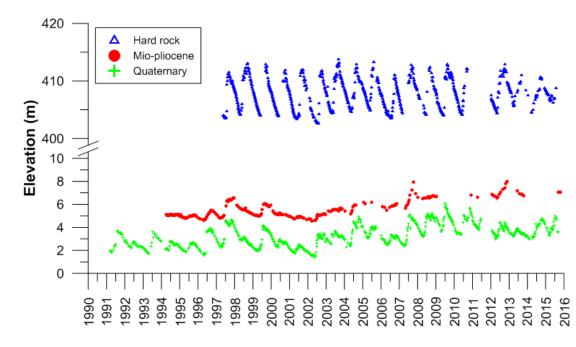
PLAN

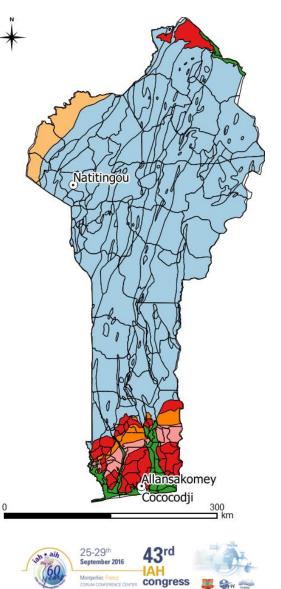

- INTRODUCTION
- METHODOLOGY
- RESULTS
- CONCLUSION AND OUTLOOKS

INTRODUCTION

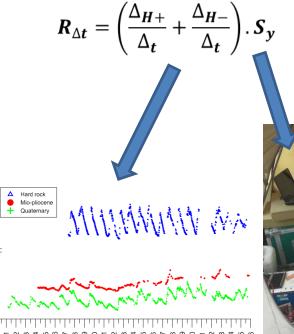
- Groundwater in Benin
 - Main resource for domestic needs
 - 950 new boreholes/year (1996-2012)
 - Recharge poorly known
 - \checkmark Quantification
 - ✓ Trend

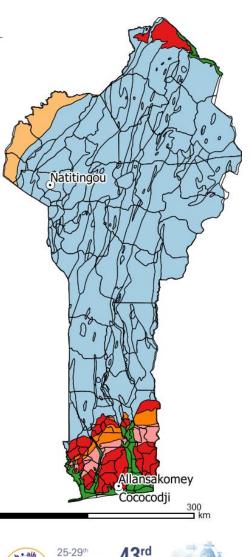



INTRODUCTION


- Groundwater in Benin
- This study aims at:
 - Quantifying the recharge
 - ✓ Hard rocks (Precambrian)
 - ✓ Mio-pliocene (Continental Terminal)
 - ✓ Quaternary sediments
 - Analyzing the trend in recharge
 - ✓ Longer chronicles of SWL in Benin
 - ✓ Medium frequency measurement time step

MATERIAL AND METHOD


- Material
 - 3 chronicles of 17-25 years
 - 10-days time step
 - Rainfall records (located at 0-14 km)

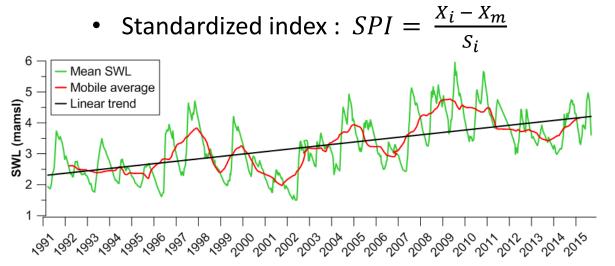

MATERIAL AND METHOD

- Material
- Method
 - Water Table Fluctuation Method

 $R_{\Delta t}$ = Recharge during Δt Δ_{H+} = Positive WL variation Δ_{H-} = Groundwater outflow S_{v} = Specific yield

Sentember 20

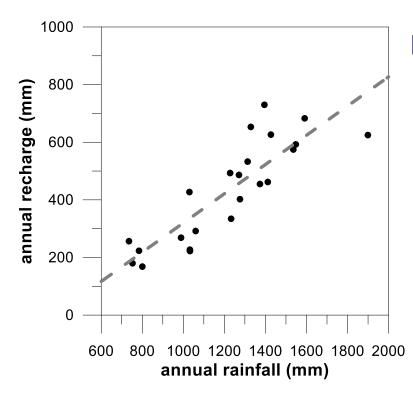
congress


420

410

Elevation (m)

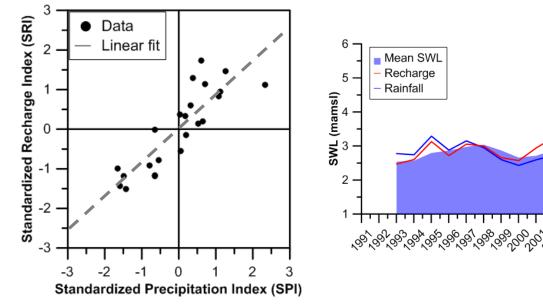
MATERIAL AND METHOD


- Material
- Method
 - Water Table Fluctuation Method
 - Trend analysis
 - Linear trend
 - Mobile average (5 years)

Xi = annual rainfall Xm = mean rainfall Si = Standard deviation

- Quaternary sediments (unconsolidated sandstone)
 - 170mm < Recharge < 700mm</p>
 - Recharge = 34% of Rainfall (annual)

September 20


congress

- Quaternary sediments (unconsolidated sand)
 - 170mm < Recharge < 700mm</p>
 - Recharge = 34% of Rainfall (annual)
 - Trend 1991-2014:
 - > Rainfall → +13 mm/year
 - > Recharge \rightarrow +11 mm/year

Annual recharge strongly controlled by rainfall Trend in recharge controlled by trend in rainfall

2000

0000000

2000

1800

1400 1200 1000

800

600

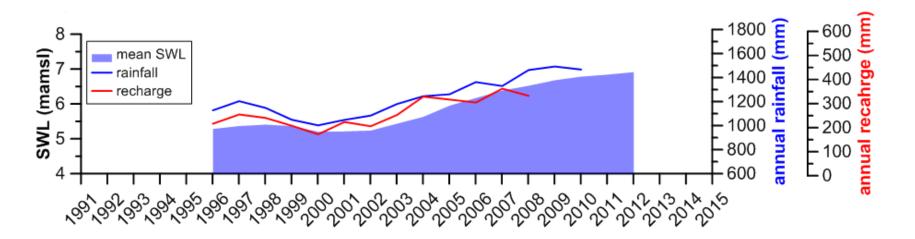
2015

1600

· 800

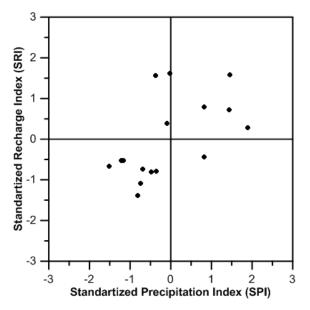
600

300

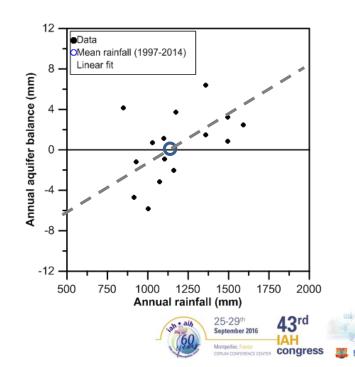

200

- 100

- Continental Terminal (Sandstone)
 - 38mm < Recharge < 580mm</p>
 - Recharge = 21% of Rainfall (annual)
 - Trend 1994-2014:
 - > Rainfall → +16 mm/year
 - > Recharge \rightarrow +7 mm/year



Annual recharge strongly controlled by rainfall Trend in recharge controlled by trend in rainfall

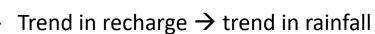

- Hard rock
 - 56mm < Recharge < 85mm</p>
 - Recharge = 6% of Rainfall (annual)
 - Trend 1997-2015:
 - > Rainfall \rightarrow +1.5 mm/year
 - ▶ Recharge \rightarrow -0.8 mm/year

Abstract N° 1857

Groundwater storage in equilibrium with rainfall No trend

CONCLUSION AND OUTLOOKS

• Conclusion


- − Recharge → geology
- − Recharge \rightarrow rainfall
- − Trend in recharge \rightarrow trend in rainfall

	Mean rainfall (mm)	Mean recharge (mm)	Recharge/ rainfall	Trend in rainfall (mm/year)	Trend in recharge (mm/year)
Quaternary sediment	1251	460	34%	+13mm	+11mm
Continental Terminal	1215	256	21%	+16mm	+7mm
Hard rock	1176	65	6%	No trend	No trend

CONCLUSION AND OUTLOOKS

- Conclusion
 - − Recharge → geology
 - − Recharge \rightarrow rainfall

	Mean rainfall (mm)	Mean recharge (mm)	Recharge/ rainfall	Trend in rainfall (mm/year)	Trend in recharge (mm/year)
Quaternary sediment	1251	460	34%	+13mm	+11mm
Continental Terminal	1215	256	21%	+16mm	+7mm
Hard rock	1176	65	6%	No trend	No trend

Outlooks

- Link geology/recharge?
- Linear process (recharge/rainfall)?

Aquifer storage vulnerable to rainfall change

THANKS

