

43rd IAH CONGRESS 25-29th September, 2016 le Corum , Montpellier, France

Numerical simulation of managed aquifer recharge into a karst groundwater system at the Wala reservoir, Jordan

Julian Xanke¹, Hervé Jourde², Tanja Liesch¹ and Nico Goldscheider¹

¹Karlsruhe Institute of Technology

²Montpellier University, Laboratoire Hydrosciences

KIT - Karlsruhe Institute of Technology, Institute of Applied Geosciences - Division of Hydrogeology

Demographic growth and semi-arid climate challenge Jordan's water management

(photo: Xanke, 201

population and ...

... economic growth

< 1 million people (1960)6.5 million people (2013)< 9.5 million people (2015)

high variability ...

Jordan's water facts

2014	(MCM)
Water demand	~1,400
Water supply	973
Surface water	259
Treated wastewater	125
Groundwater (~70% from karst aquifers)	589

Water deficit

427

Jordan's water strategy promotes the application of managed aquifer recharge

increase groundwater availability in summer

Wala reservoir stores flood water and recharges it to the underlying karst aquifer

Water balance (2002-2012)	Total [MCM]	Annual average [MCM]
Inflow	136	129
Overflow	52	4.7
Recharge	74	6.7
Evaporation	7.8	0.7
Abstraction	129	11.7

Proportion of recharge on abstraction = 56%

4 Source: Xanke et al. (2016) Numerical long-term assessment of managed aquifer recharge from a reservoir into a karst aquifer in Jordan. In: *Journal of hydrology*

Water level at the downstream Hidan wellfield is increased

Drinking water supply to the capital Amman, Madaba city and adjacent communities

5 Source: Xanke et al. (2015) Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan. In: Hydrogeology Journal

The model is used to better understand the characteristic aquifer hydraulics

Obtained by Calibration

- Reproduce water level fluctuations in the aquifer
- Identify the driving factors of water level fluctuations at the wellfield

Obtained by scenarios

- Predicted infiltration decrease caused by reservoir sedimentation
- Provide a basis for optimized water resources management

Two climate scenarios for a dry and a wet period, each 10 years
Two well management scenarios for each climate scenario

The model domain is projected onto a 2-dimensional profile along the wadi

Recharge model: subdivision into hydraulic zones simplifies the calibration procedure

Approach: finite element method (FEFLOW) – saturated flow conditions confined setting (cross sectional model)

Superelevated presentation - K values are in m/s

Recharge model: in-transfer rate Φ regulates infiltration from Wala reservoir

Infiltration increases exponential with water level

In-transfer rate (Φ = K/d) was manually adapted

Abstraction model: strong water level fluctuations are controlled by changes in the mean pumping depth

- A fault at Hidan wellfield has a damming effect on groundwater flow
- Inherent problems in representing pumping rates in a 2D vertical model

 statements about the magnitude of fluctuations have to be considered carefully

Superelevated presentation - K values are in m/s

Lowering of annual average groundwater level of about 2.7 meters at recharge wells ...

satisfying accordance of measured and simulated groundwater level fluctuations at recharge wells

... and probably a greater depletion at the wellfield

satisfying accordance of measured and simulated groundwater level fluctuations at Hidan wellfield

Conclusions

Numerical model

- Reliable simulation results were achieved with 2D vertical profile models
- subdivision into hydraulic zones allows the simulation of the karst characteristic flow pattern

Management

- The Wala reservoir poses a successful example of managed recharge into a karst aquifer
- Technical measures are required to reduce the sedimentation rates and to remove sediments from the reservoir
- The wellfield requires an improved management in terms of monitoring and abstraction

SPONSORED BY THE

Federal Ministry of Education and Research

Acknowledgements

- Co-authors: Hervé Jourde, Tanja Liesch and Nico Goldscheider
- BMBF Federal Ministry of Education and Research, Germany
- The SMART II Project (FKZ 02WM1079-1086 and FKZ02WM1211-1212)
- The SMART Move Project (FKZ 02WM1335C)
- Ministry of Water and Irrigation (MWI), Amman Jordan
- Water Authority Jordan (WAJ)
- Jordan Valley Authority (JVA)

Publications

- Xanke et al. (2015) Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan. In: *Hydrogeology Journal*.
- Xanke et al. (2016) Numerical long-term assessment of managed aquifer recharge from a reservoir into a karst aquifer in Jordan. In: *Journal of hydrology*.
- Xanke et al. (2016) Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan. (Submitted to: Hydrogeology Journal, August 2016).