IMPLICATIONS OF STORMWATER RECHARGE ON GROUNDWATER QUALITY

43RD IAH CONGRESS MONTPELLIER, FRANCE SEPTEMBER 28, 2016

Anthony Daus GSI Environmental addaus@gsienv.com

4590 MacArthur Blvd., Suite 285 | Newport Beach, CA 92660 949.679.1070 | www.gsi-net.com

STORMWATER RECHARGE IN CALIFORNIA IMPROVES SURFACE WATER QUALITY

Regulations require that stormwater is captured and infiltrated on-site or treated before discharge.

Los Angeles Times

Beach pollution at third-highest level in 22 years June 27, 2012, Los Angeles Times

Thousands of individual stormwater capture and recharge facilities are required throughout the Los Angeles Basin, many of these have already been installed

STORMWATER RECHARGE IN CALIFORNIA IMPROVES SUSTAINABILITY

Stormwater collection and recharge is viewed as an important element of improving storage in groundwater basins and improving surface water quality.

In Los Angeles alone, plans are to recharge more than 250,000,000 m³/yr.

The New York Times

U.S.

Storm Water, Long a Nuisance, May Be a Parched California's Salvation

By ADAM NAGOURNEY FEB. 19, 2016

 $\mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0}$

Are there potential groundwater quality consequences?

COUNCIL FOR WATERSHED HEALTH – WATER AUGMENTATION STUDY (WAS)

- Purpose: Evaluate the potential impacts of infiltrating storm water on underlying groundwater quality.
- Landmark 2008 study
- Monitoring program
- Each location was instrumented
- Fresh look at existing chemistry data considering recent work in hexavalent chromium.

CHROMIUM ⁶⁺ CALIFORNIA DRINKING WATER WELLS

Water quality standards for Cr⁶⁺ are set at 10 ppb.

Cr⁶⁺ is found in groundwater basins across California that exceeds 10ppb.

Significant research into the cause for the Cr⁶⁺. Sediment source rock and recharge is suspected at some locations. Major data gap – no vadose zone samples.

WAS INSTRUMENTATION AND MONITORING

- Stormwater Collection
- Vadose Zone Lysimeters
 - Shallow
 - Deep
- Groundwater Wells
- Broad Analytical Suite
- Monitoring focused on storm events

RESULTS – HEXAVALENT CHROMIUM (CR⁶⁺)

Cr ⁶⁺ Results				
Location	Cr ⁶⁺ concentration (µg/L)			
Location	Stormwater	S <mark>oil Moistur</mark> e	Groundwater	
School	ND - 0.49	ND - 40	ND - 1.7	
Residential	ND - 0.95	0.37 - 25	N/A	
Commercial	ND - 0.61	0.32 - 74	ND - 24	
Park	ND - 1.4	ND - 1.3	ND - 2.9	

Anthropogenic contamination was not suspected. No known sources of Cr⁶⁺ in the area.

RESULTS – VADOSE ZONE SOILS

Vadose Zone Soils Analysis

Ave. Soil Conc.	Arsenic (mg/kg)	Chromium (Total) (mg/kg)	lron (mg/kg)	Manganese (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	SW TDS (mg/L)
School	ND	12	13800	175	4.9	23	113
Residential	1.6	17	18400	349	12	97	42
Commercial	13	45	33800	545	43	91	18
Park	2.1	22	20850	213	11	66	177
CA Soil Background Conc.	Arsenic (mg/kg)	Chromium (Total) (mg/kg)	Iron (mg/kg)	Manganese (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	
Range	0.6-11	23-1579	1000-87000	253-1687	9-509	88-170	
Median	2.7	69	33000	590	27	153	

Total Cr has a good correlation with nickel <u>(R-Square: 85%)</u> and suggests a mafic source Elevated Mn and Fe

Mn oxides are suspected as a source of Cr oxidation to Cr⁶⁺

SOURCE OF SEDIMENTS AT COMMERCIAL SITE

The soil results suggest that a geogenic source may be a contributor. Rocks in the nearby Santa Monica Mountains are one source of the sediments to the basin.

These include mafic formations, rocks often naturally rich in Cr minerals.

COMMERCIAL SITE RESULTS – CR⁶⁺

Commercial Site Vadose Zone Soil Moisture Analysis

Soil Moisture	Arsenic	Chromium (Total)	Chromium-6	Iron	Manganese	Nickel	Zinc	TDS
Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
Lysimeter 1	2 - 18	2 - 64	2 - 35	132 - 985	1 - 5	6 - 35	63 - 209	710 - 3000
Lysimeter 2	10 - 29	9 - 83	8 - 74	1290	26 -31	1-32	120 - 7050	130 - 700
Lysimeter 3	1 - 5	1.36 - 1.4	0.32 - 0.57	101 - 224	1 - 5	2 - 4	9 - 47	180 - 750

Variability between lysimeters.

Elevated dissolved inorganic concentrations in the vadose zone.

Cr⁶⁺ and Mn data are consistent with Manning, et al., 2015.

Dissolved Fe data may present a paradox (Sedlak, 1997).

OBSERVATIONS AND CONCLUSIONS

- Potential mobility of Cr⁶⁺ varies by location at the 4 non-industrial sites in the Los Angeles Basin.
- The factors that may contribute to the mobility of Cr⁶⁺ likely include:
 - Origin and nature of the sediments and soil chemistry
 - Chemistry of the infiltrating stormwater
- Recharge in new areas that never have been subject to this quantity and quality of infiltration.
- Stormwater recharge , particularly with low ionic strength, recharge potentially disturbs the chemical equilibrium of the soils. State database suggests that ~30%-40% of the recharged stormwater has TDS < 50 mg/L.
- Results are consistent with recent USGS studies in California regarding Cr⁶⁺ mobility (Izbicki, 2012 & 2015; Manning 2015). However, these studies did not have the vadose zone moisture data.

OBSERVATIONS AND CONCLUSIONS

- The results of the WAS study suggest that careful geochemical screening of the vadose zone at stormwater infiltration facilities is warranted to avoid enhancing the migration of Cr⁶⁺ into regional groundwater supplies.
- Proper instrumentation of the vadose zone for fate and transport analysis can be challenging.
- Stormwater recharge is a critical element of groundwater sustainability plans but...

QUESTIONS?

Anthony Daus GSI Environmental addaus@gsienv.com 949-679-1079 - Office

.....