Groundwater occurrence in hard rock and resources evaluation base on field observation in Sudetes (SW Poland)

Stanisław Staśko and Sebastian Buczyński

Wrocław University, Institute of Geological Sciences , Hydrogeology Department ,

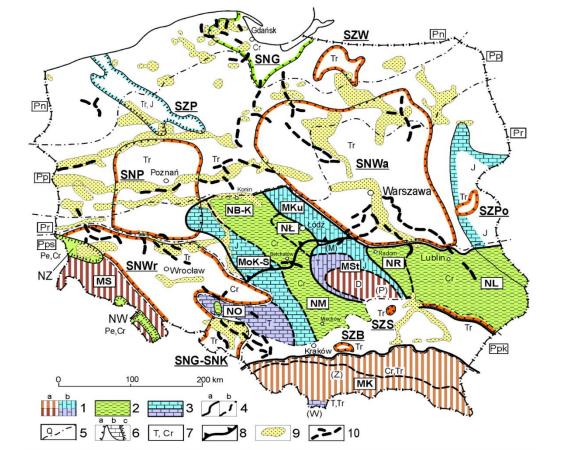
50-204 Wrocław, ul. Cybulskiego 32, Poland

IAH 43 Congress Montpellier 25-28 Sept. 2016

Contents

Groundwater occurrence in hard rock

Hard rocks as a water bearing unit, rock's parameters and water quality


Field observation in Sudetes Mts.

Three-layers scheme of groundwater zone

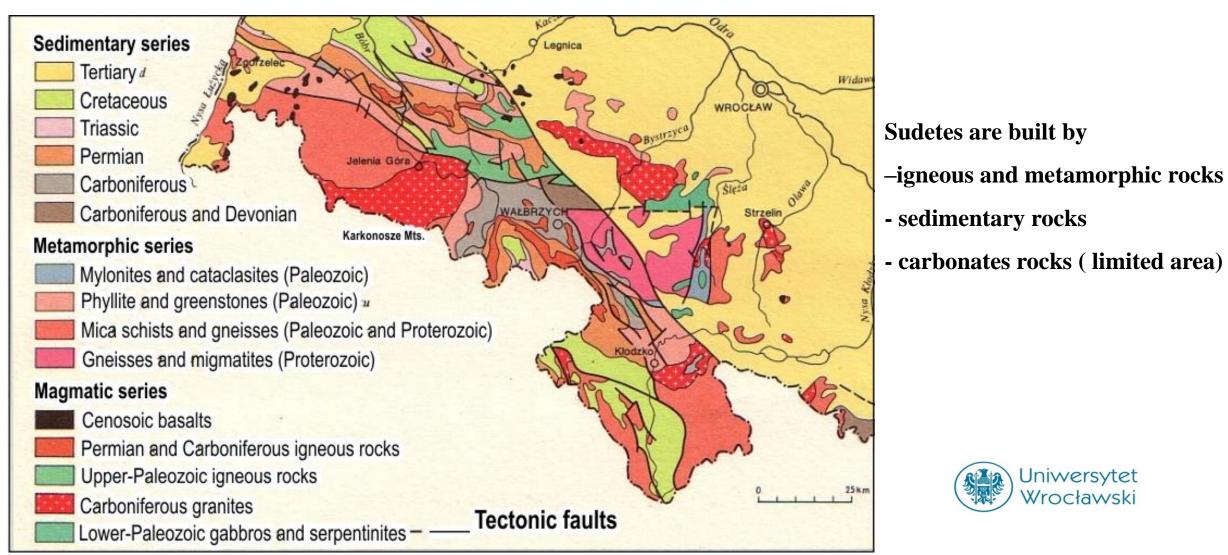
Available resources

Conclusions

Groundwater occurrence in hard rock in Poland is limited to Sudetes Mts.and Carpathian Mts.

Map of fresh groundwater classification and occurrence in Poland (after Kleczkowski, 1987, modified by Dowgiałło et al., 2002)

- 1 massif formation M, 2 basins (Cretaceous K, 3 monocline structure of Krakowsko-Silesia MK-S,
- 4a unit boundary, 4b sub unit boundary, 5 limits of basins range in Quaternary aquifers,
- 6a sub- basins SN, 6b sub- unit SZ, 7 stratigraphic names of aquifers system,
- 8 limits of southern aquifers in massif, basin and monocline, 9. major Quaternary aquifers systems, 10. major buried valleys.

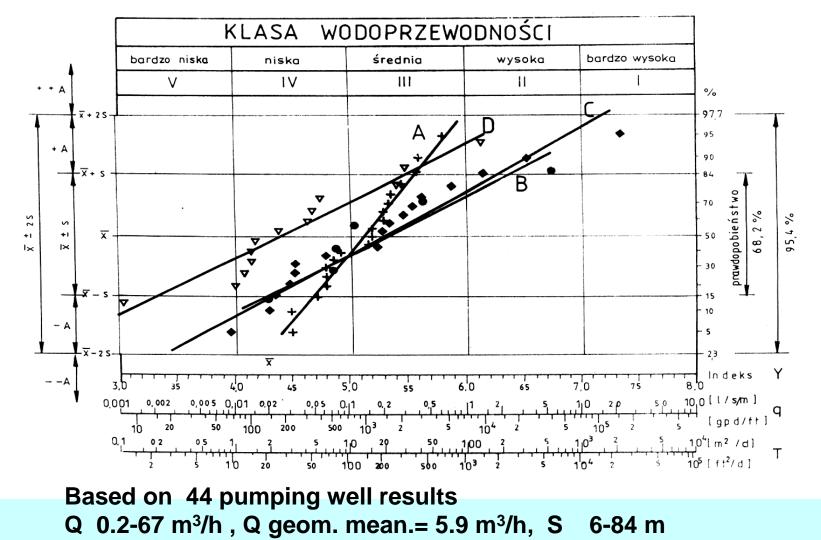


Poland

Geological map of Sudetes Mts.

Uniwersytet

Wrocławski

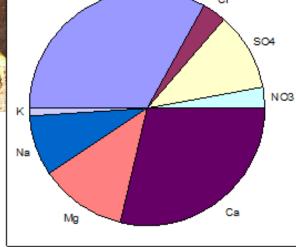

Limited vertical water well has been successfully drilled. Shallow drilling well showed low discharge in range 0.03-4.6 m³/h (0.08-12 l/s). Some information available from deep well in Ladek Zdroj (Bad Landeck) is tapping mineral and thermal water on depth 568-700 m.

Spring are frequent manifestation of groundwater and its average density equals 5 / km².

Mainly they are characterized by low discharge in range 0.1 - 1.0 l/s however also these provided water in amount from 1 do 11 l/s are recorded.

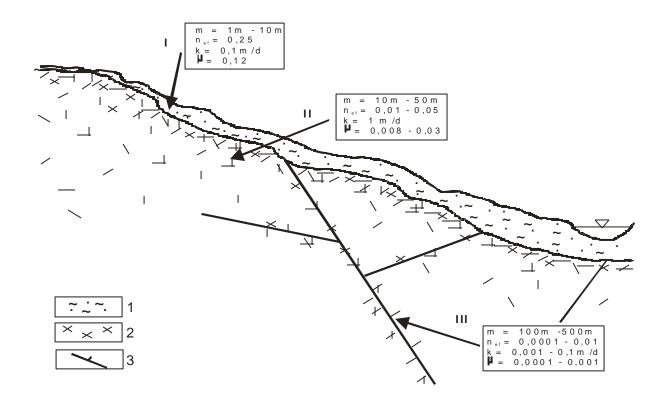
Transmissivity of selected hard rocks formation –Sudety Mts. A- gneiss Sowie Mts., B- Śnieznik massif, C- granites rocks Karkonosze Mts., D- schist formation (Stasko 1996)

After Stasko i Tarka (1995)



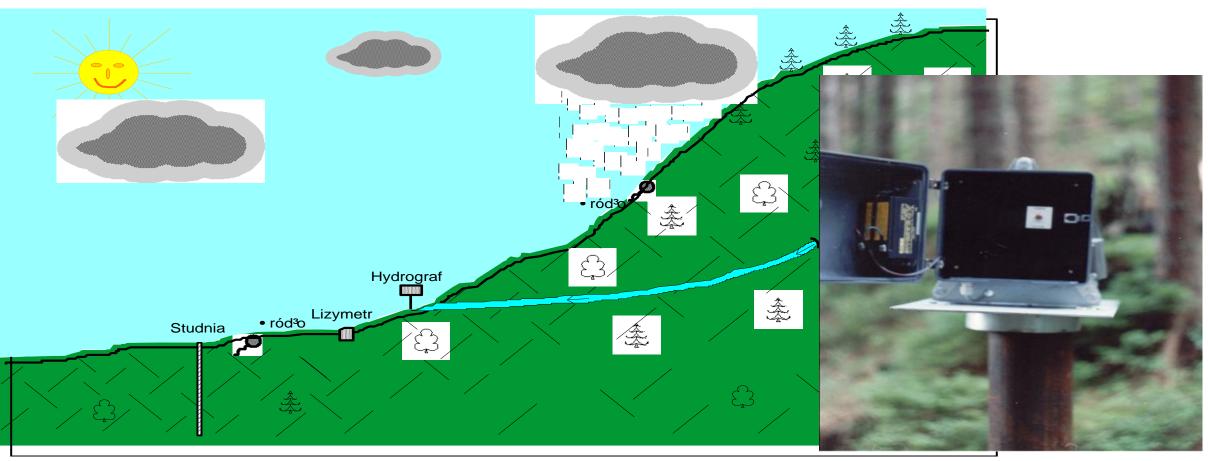
Hard rocks as a water bearing unit, rock's parameters and water quality

Groundwater are typical fresh water with low TDS (8-180 mg/l), low pH (5.5-7.5) value and locally high radon concentration up to 220 Bq/l



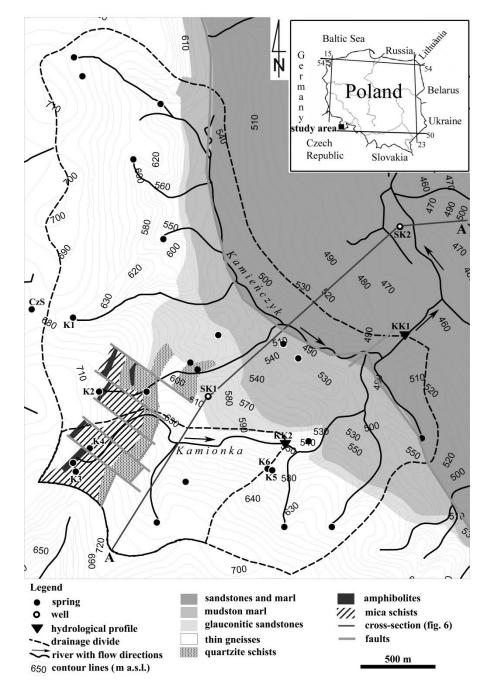
Hard rock of the Sudetes Mts . hydrogeological parameters

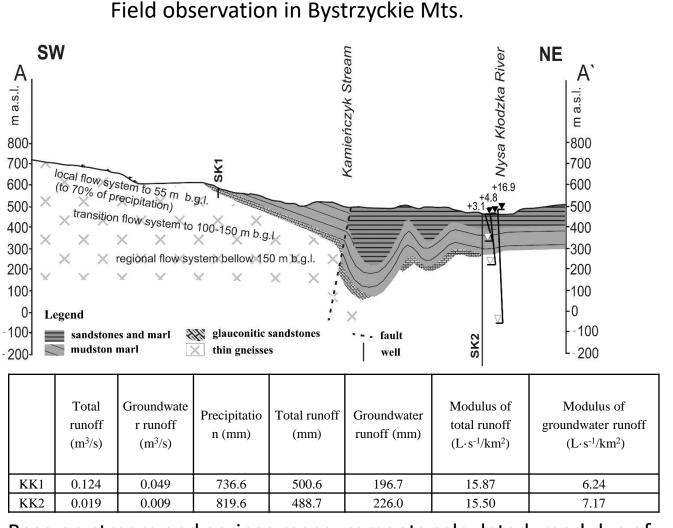
Hydrogeological parameter	Value Min- Max. Average	Author/year	Sub-region
Groundwater runoff modulus [I/s km²]	> 7 2.8-17.4 1.3- 11.9 av. 5.08 0.6-20.3 2.5-24.5 6.48-14.17 1.1-6.15 1.4-7.2	Jokiel (1994) Paczyński (1995) Kryza H, Kryza J.(1986) H.Kryza (1986) Staśko i Tarka (1994) Marszałek (1996) Bocheńska i inni (1994) Staśko (1996)	Sudetes Sudetes Sudetes Śnieżnik massif Karkonosze Mts., Izerskie Mts. Kaczawskie Mts. Sowie Mts.
Springs Spring density Sd [1/km ²] Discharge Q	Sd 2.92 Q 0.05-6.0 Sd 5.6-18.6 Q 0.1-11.0 R 2.3-31.9	H.Kryza (1983) Staśko i Tarka (1994) Staśko (1996)	Śnieżnik massif
[I/s] Variability R	Sd 2.06-7.3 Q 0.05-18.7 R 3.7-32.7	Marszałek (1996)	Karkonosze Mts., Izerskie Mts.
	Sd 0.11-1.11 av. 0.57 Q 0.1-2.0 R 1.04-11.0 Q 0.09-6.49 *	Bocheńska i inni (1994)	Kaczawskie Mts. Western Sudety
	R 3-429** Sd 1.8 Q 0.01-2,7 R 3-90	Wojtkowiak (2000) Staśko (1996)	Sowie Mts.
Well discharge , Q [m³/h] Depression S [m]	Q 0.75 -67. Q av 5.2 S 3.0-56.3	Staśko (1996	Lądeka-Kamienica region , Gór Sowich ,Jeleniej Góry
	Q 0.2-3.6 S 2-24	Zaleska i inni (1999)	Karkonosze , Jelenia Góra- Cieplice



Three –layer (zones) model of groundwater occurrence in Sudetes Mts.

Explanation : 1- weathering zone (sandy clay), 2-dense fractured massif rocks, 3-deep faults zone m- thickness , n_{ef} – effective porosity, k-hydraulic conductivity, μ - specific yield




-Field experimental station – Snieznik massif showed

-groundwater recharge equals 22-55% of total precipitation

- groundwater occurrence in significant amount is connected with weathering cover zone and dense fracture part of the massif rock and is manifested in preferential zones – discharge of horizontal mine gallery $Q = 17.4 - 26.6 \text{ l/s} (62.6-95.7 \text{m}^3/\text{h})$
- Base on tritium contents the average water resident time is 7.5 -30 year

Base on stream and springs measurements calculated modulus of groundwater runoff was in range 6.24-7.17 L·s⁻¹/km²

Conclusions

Results of field measurements and study on groundwater occurrence in Sudetes Mts. in hard rock showed :

- groundwater occurrence in significant amount is connected with theweathering cover zone and dense fracture part of the massif rock and is manifested in preferential zones

- groundwater runoff evaluated with base flow method in rivers and creeks, showed value in upper part of catchment (3.5-6.51/s km²), when in lower part, higher value (6.5 -7.5 l/s/ km²) due to direct drainage to river valley.

- methods and technique of field survey should includes complete characteristic (wells, spring, hydrograph separation, chemical composition, isotopic study etc.)

- best methods of water intake and supply is horizontal drainage intake

Thank you for your attention

