

HIGH-RESOLUTION HYDROCHEMICAL MONITORING IN A MULTILAYER KARST AQUIFER The Example of Toulon springs (Dordogne, France)

<u>Guillaume LORETTE</u>¹, R. LASTENNET¹, N. PEYRAUBE¹, A. DENIS¹

¹ University of Bordeaux, FRANCE

General characteristics

1

Local and Research issues

Objectives of the present study

Materials

Precise measurements of chemical parameters every 6

HACH

Acquisition of hydrochemical data

		1000 Rainfall - 10
DVANTAGES	DISADVANTAGES	750 - 500 - Discharge Discharge -20 @ -30 -
Directly at the outlet	Presence of Algae / biofilm	$\begin{bmatrix} 630 \\ -500 \\ -500 \\ -510 \\$
Data are more Drecise	deposition pH and Redox	Temperature $\begin{bmatrix} 8\\ -13,5\\ -13\\ 12,5\end{bmatrix}$
Viper cleaning or DOC/NO ₃ ensor and urbidity sensor	Potential	$\begin{bmatrix} 16\\ 12\\ 8\\ 4\\ 0 \end{bmatrix}$ $\begin{bmatrix} 20\\ 12\\ 12\\ 12\\ 10 \end{bmatrix}$
Weekly maintenance to acquire precise data		$\begin{bmatrix} 500\\ 450\\ 350\\ 300 \end{bmatrix} \xrightarrow{\text{pH}}_{\text{rand}} \xrightarrow{\text{rand}}_{\text{strate}} \xrightarrow{\text{strate}}_{\text{strate}} \text{$

Hydrochemical data

Low water condition : Water of deep origin (Temperature, EC)

<u>High water condition</u> : Shallow water participation (NO₃, DOC, O₂, turbidity)

Provide both seasonal and quick variations

Cross correlation function

Hydrochemical responses are complex and different for each parameter.

same cause : Dilution waters come from shallow waters

11

10.5

10/04/16 15/04/16 20/04/16 25/04/16 30/04/16 05/05/16 10/05/16 15/05/16 20/05/16 25/05/16

Interpretation

High-resolution monitoring exhibit different water types flowing at Toulon springs

Decrease in mineralization of water is directly linked with the participation of shallow water as noticed by DOC concentration

Conclusion

Temporal variations can be studied with high-resolution monitoring to assess pressure transfer (Discharge) and mass transfer (EC, DOC, NO_3) in karst aquifers

First approach is interesting but need further data to confirm assumptions on the dynamic of hydrochemical parameters

Thank you for your attention

guillaume.lorette@u-bordeaux.fr

43rd IAH congress

25-29th September 2016

