## Groundwater storage variations in the North China Plain from GRACE and ground observations

**FENG Wei** (Institute of Geodesy and Geophysics, Chinese Academy of Sciences Institute of Geodesy and Geoinformation, University of Bonn)

Min Zhong, Houze Xu (IGG/CAS) Shimin Liang, Shi Chen (China Earthquake Administration) Jean-Michel Lemoine (Géosciences Environnement Toulouse, CNES/GRGS) Laurent Longuevergne (Géosciences Rennes, Université Rennes 1) Jürgen Kusche (Institute of Geodesy and Geoinformation, University of Bonn) Di Long (Tsinghua University)

# Motivation



Percentage of grid cell area equipped for irrigation with groundwater, Siebert [2010]

## Motivation

#### Inear GWS decline during 2003-2010



Percentage of grid cell area equipped for irrigation with groundwater, *Siebert* [2010]

Trend map of groundwater storage changes from GRACE-SM

Feng et al. Water Resources Research, 2013

# Motivation

#### Previous study

• Linear GWS depletion in the NCP (2003-2010)

#### **Questions**

- Seasonal and inter-annual GWS variations in the NCP
- Causes of these GWS variations: anthropogenic vs. natural?
- Comparison with other space and ground geodetic observations (GPS, InSAR, & ground gravity observations?)

# North China Plain



North China Plain (140,000 km<sup>2</sup>) Our study region (434,000 km<sup>2</sup>)

# Cross-section of the NCP showing the general hydrogeological structure

# North China Plain

#### GWS depletion and land subsidence



http://www.hidropolitikakademi.org/

## GWS variations in the NCP

#### GRACE vs. Groundwater observations



#### Estimation of GWS variations based on well observations

- For shallow aquifers (unconfined)
  - Groundwater level changes \* specific yields (0.06 in NCP)
- For deep aquifers (confined)
  - Elastic storage change of GW (recoverable)
    - Groundwater level changes \* storage coefficients (0.00125 in NCP)
  - <u>Inelastic storage change of GW</u>, compaction of aquifers (unrecoverable, related to land subsidence (GPS/InSAR), potentially significant)

### Climatological GWS vs. Precipitation variations

#### > anthropogenic + natural effect



## Interannual GWS variations



## Long-term GWS trends



km<sup>3</sup>/yr

|           | GW observations | GW bulletins | GW model | GRACE          |
|-----------|-----------------|--------------|----------|----------------|
| 2002-2014 | -1.2 $\pm$ 0.1  | -1.9         |          | -8.4 $\pm$ 1.0 |
| 2002-2008 | -1.8 $\pm$ 0.2  | -2.5         | -4.0     | -5.0 $\pm$ 1.8 |

# GWS depletion rate estimation from GPS (*missing part*)

# Linear trends of vertical deformation from GPS (2002-2014)



## Underestimate effect estimated from InSAR

#### Linear trends of vertical deformation from InSAR (2012-2014)



#### InSAR data from Dr. ZHANG Yonghong

## GWS budget in the North China Plain

#### GWS budget can be closed based on GRACE and GPS

| 2002-2014                       | GWS depletion rate (km <sup>3</sup> /yr) |
|---------------------------------|------------------------------------------|
| Unconfined (GW obs./Bulletins)  | -1.2 ~-1.9                               |
| Confined (GPS)                  | -6.4                                     |
| Total (GW obs./Bulletins + GPS) | -7.6 ~ -8.3                              |
| Total (GRACE)                   | <b>-8.4</b> ± 1.0                        |



# Summary & Outlook

- On seasonal timescales, GRACE-derived GWS variations are well explained by the combined effect of groundwater abstraction due to anthropogenic irrigation activities and groundwater recharge from natural precipitation.
- On seasonal timescales, GRACE-derived GWS variations are dominated by groundwater changes in shallow unconfined aquifers.
- On long-term trend, the GRACE-derived GWS depletion rate is -8.4 ± 1.0 km<sup>3</sup>/yr (i.e., -1.7 ± 0.2 cm/yr in equivalent water height) during 2002-2014, three quarters of which can be well explained by groundwater changes in deep confined aquifers observed by GPS.

# Summary & Outlook

Land surface deformation from radar altimeter (Hwang et al. 2016)



Vertical displacement rates from ENVISAT

## **GRACE** Matlab Toolbox

#### https://github.com/fengweiigg/GRACE\_Matlab\_Toolbox



Schematic workflow of GMT