

Origin and dynamic of spring flows during flood events inferred from innovative tracers

<u>**de MONTETY, V.**</u>¹, TWEED, S.², MOLINA PORRAS, A.¹, SEIDEL, J. L.¹, BATIOT-GUILHE, C.¹, DUREPAIRE, X.¹, LEBLANC, M.³, PATRIS, N.¹, AQUILINA, L.⁴, LABASQUE, T.⁴

University of Montpellier-CNRS-IRD, HydroSciences, Montpellier, France
University Blaise Pascal, LMV, Clermont Ferrand, France
University of Avignon, UMR EMMAH, Avignon, France
University of Rennes 1-CNRS, UMR 6118, Rennes, France

veronique.de-montety@umontpellier.fr

Abstr. N°1610

Vadose Z

Saturated Z

Diluted, Contaminations

(E.Coli), Turbidity (OM)

Karst aquifers

✓ Heterogeneous structure : different flowpaths

Surficial infiltration Saturated zone (Deep contribution)

Mixing vary within the hydrologic cycle \checkmark

Higher mineralization & residence time

Mediteranean context

- ✓ Intense recharge event
- ✓ Strong anthropogenic pressure and increasing water demand

Bloc diagram of a karst, BRGM

How to identify the origin and mixing of water during flood event?

 \Rightarrow assess vulnerability to contaminant transfers during intense storm events

• Focus on a Mediterranean karst aquifer: Lez hydrosystem

Focus on a Mediterranean karst aquifer: Lez hydrosystem

3 types of flow identified at seasonal scale:

Saturated zone

Surficial infiltration

Deep contribution : presence of episodic high mineralized water at the beginning of the hydrologic cycle (first flood event)

✓ Strong anthropogenic pressure : Waste water/Urban Industrial activity

Monitoring Lez Spring umène Continuous and high frequency monitoring ¹⁸O, ²H - Picarro -1min -± 0.04 ‰ pre-event/event ٠ EC, DO, pH, Cl, Temp. -10min mineralised/diluted flow ٠ evrargu Natural Fluorescence • Surficial flow/ contamination (humic/proteic like compounds) -(waste water plant) 10 min Daily sampling of innovative tracers Residence time(< 50 yrs) Dissolved gazes (CFCs, SF₆, Ne, Ar) Contamination ٠ Montpellier Ψ. (Urban/Industrial) ²²²Rn Deep flow/surficial flow • 4.0 3.8 lydrogeologic Limits Lez Spring Major fault (NE-SW) Triadou well Rain Gauge Triadou multilevel well 68m Shallow water level 68m Deep water level 220m **Rain Gauge**

- Local/Regional
- 180,2H sampling
- Intermittent stream level

12

congress

25-29th

Sentember 20

Results

• Recharge dynamic

Event 1: 14 Septembre

- Local rainfall < 50 mm
- Regional rainfall > 350 mm (NW)
- No surficial flow
- Δ i1< i4

Event 2: 4 Octobre

- Local rainfall > 50 mm
- Surficial flow
- ∆ i1> i4

•

Event 3: 4 Novembre

• Local rainfall > 120 mm

25-29th September 201 43rd

congress

- Surficial flow
- Δ i1> i4
- ⇒ Consequences on the hydrochemical response?
- ⇒ Indicators of flow type at the spring?

Montpellier,

congress

• Hydrochemical response

Study site

Results

- Conclusions
 - Monitoring at the event scale (with low gap!)
 - Relevance of continuous field monitoring using laser spectrometer
 - Dissolved gases time series
 - Better constrain the origin and the occurrence of flows:

Contaminated	Low rain inducing surface flows	Peak of proteic like compound
surficial infiltration		

Deep	Rain inducing deep water level	Decrease of CFC contamination
mineralized	(i4) increase up to 65m	Variation of ¹⁸ O
water	BUT low surface flows	

- ⇒ Crucial information for managing Montpellier water resource
- Next steps?
 - Combined hydrodynamical information to create a proxi
 - Mixing proportions
 - Origin of contaminations

Emel

HydroSciences Montpellier CNRS - IRD - UM1 - UM2

Thank you for your attention

<u>**de MONTETY, V.**</u>¹, TWEED, S.², MOLINA PORRAS, A.¹, SEIDEL, J. L.¹, BATIOT-GUILHE, C.¹, DUREPAIRE, X.¹, LEBLANC, M.³, PATRIS, N.¹, AQUILINA, L.⁴, LABASQUE, T.⁴

Abstr. N°1610

veronique.de-montety@umontpellier.fr

• Hydrochemical response

80

Results

Event 3: 4 Novembre

Context and objectives

Carte 2: Pluviométrie régionale du 11 au 14/09 - sources MétéoFrance

Results

Local/Regional

180,2H sampling

25-29th

September 20

43

congress

 \checkmark

- Surficial water level 68m
- Deep water level 220m
- ✓ Intermittent stream level

