

Evaluation of groundwater age in a layered aquifer system using analytical and numerical models

Eun-Hee Koh¹, Dugin Kaown¹, Eunhee Lee², Kang-Kun Lee¹ 1. Seoul National University, South Korea 2. Korea Institute of Geoscience and Mineral Resources, South Korea

Abstract number: 1606

Groundwater age?

- Groundwater age: the time elapsed since recharge into subsurface.
- Groundwater age is composed of water particles with various ages depending on aquifer structure, heterogeneity of the physical parameters and recharge patterns (Cornaton, 2004; Bethke and Johnson, 2008).
- Consideration of groundwater age mixing process is needed to understand the aquifer flow characteristics properly.

Groundwater age

- Recharge rates, estimate flow rate, time scale of contaminant transport...

Aquifer vulnerability

- surface contamination sources
- : percolating into the subsurface aquifer along with recharged water.
- : transporting through the aquifer medium depending on it's geological settings.

\rightarrow related to the age distribution of groundwater

Nitrate contamination

- Evaluate the aquifer vulnerability by nitrate contamination associated with interpretation of the groundwater age distribution.
- Böhlke, 2002; Manning et al., 2005; Koh et al., 2006; McMahon et al., 2008; Visser et al., 2013; Alikhani et al., 2016; Jurgens et al., 2016.

- Nitrate contamination in groundwater of Gosan area has been reported (Koh et al., 2012)
- Study area description

: Gosan ri, Hangyeong myoen, Jeju island

- Located western part of Jeju island
- Readjustment of arable land in 1970s
- Cultivated crops
- : rice, bean, sesame (Summer)
- : garlic, onion, radish, cabbage (Winter)
- Annual usage of fertilizers (2010) : 627 kg-N/ha/yr

Hydrogeology and nitrate contamination

<Groundwater occurrences>

<Spatial distributions of NO₃-N>

1) Perched GW

: Strongly affected by nitrate contaminant sources

2) Regional GW:

- : Group1- naturally occurring groundwater
- : Group2- affected nitrate contaminant sources

- Perched groundwater is distributed in the upper parts of the clay beds.

- -> two aquifer systems
 - : perched and regional groundwater

Well leakage impacts on the nitrate contamination

Inflows of the perched groundwater to the RW2 well : depth of 2.33 m

NO₃-N concentrations at the RW2 : $17.8 \text{ mg/L} \rightarrow 1.5 \text{ mg/L}$ before and after re-grouting.

Date (MM/DD/YY)

<u>Nitrate-contaminated regional groundwater</u>

→ Inflow of perched groundwater with high concentration of NO₃-N through improperly completed wells (Koh et al., 2012). Page • 6

Objectives

- it is necessary to evaluate aqufer vulnerability to the nitrate loadings before establishing management plans to control the groundwater contamination by nitrate:
- 1) Applying various methods to estimate the groundwater age in the Gosan area which has complex hydrogeological settings
- Constraining the timescale of nitrate loading affected by N-input history 2)

GW sampling and tracer analysis

Groundwater sampling

- 1) Oct., 2009
- Regional GW (15 wells)
- -3H, CFCs (CFC-11, CFC-12, CFC-113)

2) June, 2012; Dec., 2013 -Perched (9 wells) & Regional GW (18 wells) - ³H, noble gases

3) Mar., 2014

- -Perched (5 wells) & Regional GW (12 wells)
- ³H, noble gases, CFCs (CFC-11, CFC-12, CFC-113)

Analysis of environmental tracers

³H: KIGAM, IT2 Isotope Tracer Technologies Noble gases: noble gas Lab., university of Utah CFCs: KIGAM, noble gas Lab., university of Utah

1) Environmental tracers

- ³H decays by β-decay to ³He_{trit} with 12.32 years of half-life (decay constant, λ=ln(2)/T_{1/2}=0.0563 yr⁻¹)
- ³H/³He age (Schlosser et al., 1989)

$$t = \frac{1}{\lambda} \left(1 + \frac{{}^{3}He_{tri}}{{}^{3}H} \right) \qquad {}^{4}He_{tot} = {}^{4}He_{eq} + {}^{4}He_{ex} + {}^{4}He_{terr} + {}^{3}He_{trit} + {}^{3}He_{tot} = {}^{3}He_{eq} + {}^{3}He_{ex} + {}^{3}He_{terr} + {}^{3}He_{trit} + {}^{3$$

³He_{tot}: total (measured) ³He
³He_{eq}: ³He equilibrated with air
³He_{exc}: ³He equilibrated with excess air (dissolution of entrapped air bubbles near the water table)
³He_{terr}: terrigenic ³He derived from earth's crust and mantle

2) Lumped parameter model (Maloszewski and Zuber, 1982, 1993)

- : Applying mixing of tracers using simplified aquifer geometry and flow characteristics
- : TracerLPM (Jurgens et al., 2012)

$$C_{out}(t) = \int_{0}^{\infty} C_{in}(t - t') \exp(-\lambda t') g(t') dt'$$
Conc. of age
tracer
$$C_{out}(t) = \int_{0}^{\infty} C_{in}(t - t') \exp(-\lambda t') g(t') dt'$$
Age distribution functions

t: sampling date t': date at which a water parcel entered the system λ: decay constant t-t': age of water parcel (=т)

3) Numerical model (Advection-dispersion model)

-Advective-dispersive transport of travel time distribution (Cornaton and Perrochet, 2006; Park et al., 2008; Lemieux and Sudicky, 2010; McCallum et al., 2014)

-Age PDF (probability density function) ← Age CDF (cumulative distribution function)

Numerical model setting

- HydroGeoSphere (numerical model)
- Variably-saturated groundwater flow and travel time probability transport
- Two separated domains are developed:

- Model calibration
- Head (Pseudo steady-state simulation), ³H concentration (transient simulation of 1961~2014)

Numerical model setting

Clay

Volcanic rocks

Seogwipo Formation 1.0E-7

1.0E-8

2.5E-4

1.0E-9

7.0E-5

1.0E-8

0.42

0.35

0.30

1.0E-4

1.0E-5

1.0E-4

0.27

4.54

Page 11

^aJeiudo: ^b Batu, 1998: ^c Hodnett and Tomasella, 2002

1.51

0.1

50.0

30.0

0.01

5.0

3.0

Results: Tracer ages

³H-³He ages

Aquifer type	Well ID	Date	³ Н (TU)	Ne total (ccSTP/g)	He⁴ (ccSTP/g)	R/Ra	excess air [% Ne]	³ He_trit (TU)	³ H- ³ He_age (year)	Recharge year	initial_ ³ H (TU)
Perched GW	M2	2012-06-20	2.4±0.6	1.93E-07	4.47E-08	0.99	6.2	1.8 ±0.7	10.0 <u>+</u> 3.6	2002.6	4.3
	М3	2012-06-20	3.1 <u>±</u> 0.8	1.89E-07	4.30E-08	0.94	1.7	0.5 ± 0.8	2.6 ± 4.0	2010.0	3.6
	M5	2014-03-01	2.2 <u>+</u> 0.8	2.02E-07	4.70E-08	1.02	2.2	1.0 ±1.6	6.6 ±9.4	2007.7	3.2
Regional GW	D-080	2012-06-20	1.0 <u>±</u> 0.9	2.20E-07	8.45E-08	3.41	16.7	12.8±1.7	47.2±15.0	1965.4	13.8
	D-190	2013-12-13	1.4 <u>+</u> 0.9	2.12E-07	8.14E-08	3.25	9.9	2.4 ±1.8	17.9 ±10.7	1996.0	3.8
	D-080	2014-03-01	0.9 <u>+</u> 0.7	2.47E-07	1.47E-07	4.82	25.1	26.1±4.0	60.5 ±13.6	1953.8	27.0
	D-088	2014-03-01	1.3 ± 0.5	2.35E-07	1.55E-07	4.81	19.2	5.9 ±4.2	30.5 ±11.8	1983.8	7.2
	D-134	2014-03-01	1.3 ± 0.5	2.48E-07	8.27E-08	2.75	25.9	6.5 ±1.7	31.7 ±6.9	1982.6	7.8
	F-052	2012-06-20	1.7 <u>±</u> 0.7	2.67E-07	6.74E-08	1.25	39.7	7.6 ±1.5	30.0 ±6.3	1982.6	9.4
	D-170	2013-12-13	1.2 ± 0.9	2.37E-07	5.66E-08	1.10	24.4	9.3 ±1.6	38.3 ±11.9	1975.6	10.5

Jurgens et al., 2012

Results: Lumped parameter model

Binary mixing model: young (dispersion model)+old water (piston model)

	Sampling		CFC12	NO ₃ -N	DP	0.01	DP 0.5	
Well ID	date	(TU)	(pptv)	(mg/L)	DM ages	young fraction	DM ages	young fraction
D-134		2.7	151.5	16.90	33	0.62	-	-
D-170		2.4	517.2	15.70	10	0.95	4	0.96
D-171		2.6	434.2	15.50	13	0.81	7	0.82
F-427	Oct., 2009	2.7	531.8	17.60	10	0.97	4	0.98
F-493		2.0	208.9	17.00	27	0.61	25	0.53
D-088		2.0	385.5	20.80	10	0.71	4	0.71
U-041		1.7	457.7	15.40	10	0.84	-	-
F-052		2.0	418.9	31.44	10	0.77	6	0.79
D-134		1.3	337.5	12.16	6	0.62	-	-
D-170		2.1	419.3	23.49	20	0.45	8	0.79
U-041		1.5	178.0	3.84	33	0.35	32	0.33
D-080	Mar., 2014	0.9	224.8	8.89	7	0.41	-	-
D-155		1.3	409.9	23.09	15	0.75	-	-
D-088		1.3	267.0	9.80	20	0.33	10	0.50
D-120		2.5	369.9	12.04	29	0.55	24	0.70
D-190		2.0	298.5	10.40	29	0.50	24	0.56

Page • 13

Age fraction of samples: Lumped parameter model

5

Reconstruction of NO₃-N contamination

Estimation of NO₃-N in young water component

F_{young}: fraction of young water F_{old}: fraction of old water

1.6 mg/L averaged for $^{3}H < 0.5$ TU

 \mathbf{V}

NO₃-N in young water (dispersion model)

Numerical model results

Model calibration

1) Perched GW

2) Regional GW

3

4

5

Simulated ³H distribution

Z exaggeration:10

Numerical model results

Cross-sectional view at the leaky well

<Mean age>

Numerical model results

Lowland well

NO₃-N transport process with timescale

(4) Well leakage

(1) Recharge infiltration

- Groundwater age can provide information about aquifer's hydrogeologic characteristics.
- In the Gosan agricultural area, where has complex hydrogeological settings, interpretation of groundwater age from three estimation methods was utilized to evaluate the nitrate contamination process.
- Tracer ages estimated relatively older groundwater ages than the other methods due to no consideration of mixing process.
- Lumped parameter model ages could present binary mixing of young and old groundwater. N-input of younger than 30 years would affect the water quality in the regional aquifer.
- Numerical model could show the full age distribution and impacts of various age components of waters.
- Approaches for evaluating the nitrate contamination process combining with the full age distribution can be applied for establishing groundwater management plans.

Thank you!

³H: 재구성한 강우내 농도; CFC-12: 북반구 대기농도

Reconstruction of NO₃-N contamination

Estimation of NO₃-N in young water component

 F_{young} : fraction of young water F_{old} : fraction of old water

1.6 mg/L averaged for ³H < 0.5 TU

Lumped parameter model

Page
25

USGS, 2012

vx

DP = dispersion parameter =

V: velocity X: outlet position

³H-³He apparent groundwater age

- ³H decays by β-decay to ³He with 12.32 yrs of half-life (decay constant, λ=ln(2)/T_{1/2}=0.0563 yr⁻¹)
- ³H/³He age (Schlosser et al., 1989)

$$t = \frac{1}{\lambda} \left(1 + \frac{{}^{3}He_{tri}}{{}^{3}H} \right)$$

• ${}^{3}\text{He}_{tot} = {}^{3}\text{He}_{eq} + {}^{3}\text{He}_{exc} + {}^{3}\text{He}_{terr} + {}^{3}\text{He}_{tirt}$

³He_{trit}: tritiogenic ³He

Calculation of ³H-³He age

• ³H/³He age (Schlosser et al., 1989)

$$t = \frac{1}{\lambda} \left(1 + \frac{{}^{3}He_{trit}}{{}^{3}H} \right)^{3}He_{trit}$$
: tritiogenic ³He
³H가 붕괴되어 생성되는 ³He_{trit} 값을 구해야 함.

$${}^{4}\text{He}_{tot} = {}^{4}\text{He}_{eq} + {}^{4}\text{He}_{ex} + {}^{4}\text{He}_{terr}$$

$${}^{3}\text{He}_{tot} = {}^{3}\text{He}_{eq} + {}^{3}\text{He}_{ex} + {}^{3}\text{He}_{terr} + {}^{3}\text{He}_{trit}$$

$${}^{4}\text{H} = \tilde{\triangleleft} \text{ A} \text{ C} \qquad {}^{3}\text{He}_{ex} = ({}^{3}\text{He}/{}^{4}\text{He})_{air} \times {}^{4}\text{He}_{ex} \longrightarrow {}^{4}\text{He}_{ex} = ({}^{20}\text{Ne}_{tot} - {}^{20}\text{Ne}_{eq}) \times ({}^{4}\text{He}/{}^{20}\text{Ne})_{air}$$
or Excess air model (Noble90)
$${}^{3}\text{He}_{terr} = {}^{4}\text{He}_{terr} * ({}^{3}\text{He}/{}^{4}\text{He})_{terr}$$

$${}^{4}\text{He}_{terr} = {}^{4}\text{He}_{tot} - {}^{4}\text{He}_{eq} - {}^{4}\text{He}_{ex}$$

Lumped parameter model

Page $^{\circ}$ 28 C₁(t): the tracer concentration observed at the measuring point

Aeschbach-Hertig, 2011

Model setting

