

- Use of 222 Rn and δ^{18} O- δ^{2} H isotopes in detecting origin of water and in quantifying groundwater inflow rates in an alarmingly growing Lake
- Seifu Kebede¹, Samson Zewdu¹, Masami Nakata²
- ¹Addis Ababa University, Ethiopia ²Kumamoto University, Japan

Presentation outline

- 1. Introduction
- 2. The problem
- 3. Methodology
 - ²²²Rn approach
 - $-~\delta^{18}\text{O-}\delta^2\text{H}$ approach
- 4. Results-Discussion
- 5. Summary

Introduction

Expanding irrigation since 1954

Active seismicity

Active ground deformation and ground-fissuring

Axial part of rifting

The problem- a rapidly expanding lake

The problem- Inundation

The problem-inundation

The problem- downstream salinization

The problem- multiple interacting processes

Williams et al., 2003 Ground fissuring

The problem- multiple interacting processes

The problem- multiple interacting processes

- 1. Groundwater mounding in relation to irrigation expansion [MWIE, 2007]
 - Conventional hydrology/hydrogeology
- 2. Deformation of the Lake bathymetry [Goerner et al., 2009]
 - Altimetry
- 3. Increase in spring discharge to the Lake [Goerner et al., 2009]
 - Satellite based temperature changes
- 4. Neo-fractures (ground fissures) induced deep groundwater inflow [Belay, 2009; Ayenew, 1998; Abiye 2006]
 - Modeling and water level monitoring
- 5. Irrigation excess water [Abiye 2006]
 - Pragmatic- coincidence between water level rise and irrg expansion
- 6. Change is stage of Awash River [Tesema, 1998]

Methodology

²²²Rn uses

- Detecting site of groundwater inflow
- Quantifying water balance

Cook et al., 2003

 δ^{18} O- δ^{2} H

- Detecting groundwater outflow directions Krabbenhoft et al., 1990

- Detecting composition and thereby source of contributing water to lakes Dincer, 1968; Yi et al., 2008

- Quantifying water balance

Methodology- Radon Inventory

222Rn: Quantifying groundwater inflow to Lake- assuming radon steady

 $G + S + PA_{L} = Q + EA_{L}$ $C_{G}G + C_{S}S + FA_{b} = QC_{L} + kAC_{L} + \lambda VC_{L}$ $G = \frac{(S + PA_{L} + kA_{L} + \lambda V)C_{L} - FA_{b} - SC_{S}}{C_{G} - C_{L}}$

$$FA_b = kAC_L + \lambda VC_L$$

Assumptions

- -Radon and hydrology steady state
- Radon production inside the Lake, negligible
- Lowest radon in the lake correspond to diffusive flux (F)

Methodology- Radon Inventory assumptions

Assumptions made based on literature [Cook et al, Schmidt et al, Kluge et al., Peterson et al., Duliaova et al...]

-Radon and hydrology steady state

- Radon production inside the Lake, negligible

- Lowest radon in the lake correspond to diffusive flux (F)

Methodology- Radon Inventory inputs

Variable	Unit	Required input parameters
G	m³/day	Groundwater inflow rate
s	m³/day	Surface water inflow from channelized and overland flows
Р	m/day	Depth of precipitation on the lake
Q	m/day	Aggregate water loss to surface and groundwater outflows
AL	m²	Lake Area, m ²
E	m/day	Depth of evaporation from lake surface
An	m²	Area of Lake bottom surface contributing radon flux via diffusive pathways from sediments
v	m ³	Lake volume
۸	day ⁻¹	Radon decay constant
к	mday ⁻¹	Gas exchange velocity (wind speed and temperature turbulent degassing rate)
F	Bg/m²/day	Diffusive radon flux from lake bottom sediments, $FA_b = kAC_L + \lambda VC_L$
C,	Bg/L	Mean Radon activity in the Lake
C _G	<mark>B.g</mark> /L	Mean radon activity in inflowing groundwater obtained from measurement in a borehole
C _s	Ba/L	Mean radon activity in inflowing runoff

Results-21 sites measured using Durrige RAD Aqua

Results- d18O, d2H spatial pattern two gw types

Two types of groundwaters

•d18O-d2H depleted deep, old waters [Craig 1977, Kebede et al, 2008; Brezler et al., 2011]

•d18O-d2H enriched shallow, young waters

Results- LMWL intersection with LEL

Results- groundwater outflow

Groundwater outflow zone in the NE sector of the Lake detected from enriched d180 in the groundwaters

Results- radon balance

Current	Belay,	<u>Goerner</u> et	MWIE,	HALCROW,	Tesemma,
study	2010	al., 2009	2014	1989	1998
170	33	17	103*	1.5	37

* the value is for base year 2010

Annual groundwater inflow in MMC

Current estimate = 170 MMC = 5.4 m3/s

Results- validation

Farm	Start	Farm	Uptake	Conveyance	Distribution	Field level water	Net seepage loss
	date	size	(m³/s)	loss (m³/s)	Loss (m³/s)	application loss (m ³ /s)	(m³/s)
		(ha)					
Main-	1965	8000	6.02	-	-	0.60	1.41
Metahara-							
Abadir-	1968	3500	3.51	-	-	0.35	1.06
Metahara							
Nure Hera	1970	3740	2.55	-	-	-	1.02
Fentale	2007	4520	4.61	1.2	0.3	1.3	2.81

Seepage loss from Irrigation areas; 6.3 m3/s

Results- validation

Discussion- sensitivity

Summary

- 1. Combined d18O-d2H and 222Rn constrain the origin of water and its amount
- 2. Rapid groundwater inflow may be aided by the fractures and the caves, but main source of water is the irrigation excece water getting its way to the lake through the sub surface
- 3. Lake Beseka poses far greater problem challenging the gain from irrigation investment

Thank you