

Eco technologies

Assessing the potential impacts of CO2 leakage on fresh groundwater: from experiments to predictive models Lions J.¹, Jakymiw C.¹, Devau N.¹, Humez P.², Barsotti ^{V.3} ¹ BRGM, Orléans, France

² Applied Geochemistry group, University of Calgary, Canada ³ ISTO-CNRS, Orléans, France

AIH, Montpellier, France, Septembre 2016

CIPRES Project

- French national project dedicated to assess potential impacts of CO₂ leak on GW quality
- > Characterization of the geochemical reactivity
 - Trace element mobilization
 - Spatial and temporal distribution of potential impacts

Case study: Albian aquifer

- Strategic reserve for DW supply
- Multilayered aquifer with a specific layer : green sand
 - Glauconite (Fe-rich phyllosilicate) with high surface properties

Experimental studies on the albian green sand

- Batch reactor (Humez et al. 2012)
- Isotherms on glauconite (Barsotti et al. 2014)
- Geochemical model (PHREEQC) _

Reactive transport model

- **3D reactive transport model** (ToughReact)
- Simulation (100 yrs): CO₂ leak at the bottom 3 rates :

0.001 kg/s (27 t) to 0.1 kg/s (2720 t) during 1 yr and natural release (99 yr.)

Monitoring plan assessment

