# Kansa's Multiquadric Based Meshfree Solution for Confined Aquifer (nº 1534)

### Sharad Patel and A.K. Rastogi

(sharadp56@gmail.com)

(akr@civil.iitb.ac.in)

Indian Institute of Technology Bombay, India



## Meshfree (Mfree) methods

 According to GR Liu (2003) "An Mfree technique is a method used to establish system algebraic equations for the whole problem domain without the use of predefined mesh for domain discretization".



## Governing equation for confined aquifer

 Confined anisotropic heterogeneous and areal recharge including pumping (Willis and Yeh 1987):

$$\frac{\partial}{\partial x} \left( T_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left( T_y \frac{\partial h}{\partial y} \right) = S \frac{\partial h}{\partial t} \pm Q_w \left( x - x_p \right) \left( y - y_p \right) + R$$

- Initial boundary condition:  $h(x, y, 0) = h_0(x, y)$
- Constant head:  $h(x, y, t) = h_1(x, y, t)$
- Boundary flux:  $T \frac{\partial h}{\partial n} = q_2(x, y, t)$

## Approximation of head variable

- Head approximation: If  $h(x, y, t) \rightarrow h(x, y, t)$
- Than by multiquadric approach (Kansa 1990):  $h(x, y, t) = \sum_{j=1}^{N} h_j(t) \cdot \phi_j(x, y)$

in domain

• where 
$$\phi_j = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + C_s}$$
 as RBF

$$C_{s} = \text{Shape parameter} = d_{s}\alpha_{s}$$

$$\alpha_{s} = \text{Support size for RBF}$$

$$A = \text{Area of domain}$$

$$N = \text{Total no. of nodes in domain}$$
September 28, 2016

## Discretized form of GW flow eq.



September 28, 2016

## Discretized form of GW flow eq.

$$\begin{bmatrix} \frac{S}{\Delta t} \left( \sum_{j=1}^{N} \phi_{j}(x_{i}, y_{i}) \right) - T_{x} \left( \sum_{j=1}^{N} \frac{\partial^{2} \phi_{j}(x_{i}, y_{i})}{\partial x^{2}} \right) - T_{y} \left( \sum_{j=1}^{N} \frac{\partial^{2} \phi_{j}(x_{i}, y_{i})}{\partial y^{2}} \right) \end{bmatrix}$$

$$\times \{h_{j}\}^{t+1} = \underbrace{\frac{S}{\Delta t} \left( \sum_{j=1}^{N} \phi_{j}(x_{i}, y_{i}) \cdot \{h_{j}\}^{t} \right)}_{f(x_{i}, y_{i})} \text{ where } i=1,2...N_{I}$$



### Discretized form of GW flow eq.

$$\begin{bmatrix} \frac{S}{\Delta t} \left( \sum_{j=1}^{N} \phi_{j}(x_{i}, y_{i}) \right) - T_{x} \left( \sum_{j=1}^{N} \frac{\partial^{2} \phi_{j}(x_{i}, y_{i})}{\partial x^{2}} \right) - T_{y} \left( \sum_{j=1}^{N} \frac{\partial^{2} \phi_{j}(x_{i}, y_{i})}{\partial y^{2}} \right) \end{bmatrix}$$

$$\times \{h_{j}\}^{t+1} = \underbrace{\frac{S}{\Delta t} \left( \sum_{j=1}^{N} \phi_{j}(x_{i}, y_{i}) \cdot \{h_{j}\}^{t} \right)}_{f(x_{i}, y_{i})} \text{ where } i=1,2...N_{I}$$



## Solution of GW flow eq.

![](_page_7_Picture_1.jpeg)

September 28, 2016

## Solution of GW flow eq.

$$\{h_{j}\} = [A]^{-1}\{F\}$$
  
hence  $h(x, y, t) = [A]^{-1}\{F\}[\phi(x, y, t)]$ 

![](_page_8_Picture_2.jpeg)

## Solution of GW flow eq.

$$\{h_{i}\} = [A]^{-1}\{F\}$$
  
hence  $h(x, y, t) = [A]^{-1}\{F\}[\phi(x, y, t)]$   
where  $A = \begin{bmatrix} A_{i} \\ A_{Bi} \\ A_{Bi} \end{bmatrix}$  and  $F = \begin{cases} f(x_{i}, y_{i}) \\ g(x_{i}, y_{i}) \\ k(x_{i}, y_{i}) \end{cases}$ 

1

![](_page_9_Picture_2.jpeg)

# Proposed Meshfree groundwater model

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

## Testing of Mfree simulation model

#### 2-D rectangular well at center problem (Chan et al. 1976)

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

## Testing of Mfree simulation model

#### 2-D rectangular well at center problem (Chan et al. 1976)

![](_page_12_Figure_2.jpeg)

Area= 1400m X 1400m
Constant boundary head= 100m
Transmissivity= 100 m<sup>2</sup>/d
Initial steady state head= 100 m
Pumping rate at center well = 10000 m<sup>3</sup>/d
Number of nodes = 225

![](_page_12_Picture_4.jpeg)

#### Analytical and Mfree solution (Δt= 1day) for 1 day of pumping

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

# Effect of pumping period on observation well head values

![](_page_14_Figure_2.jpeg)

September 28, 2016

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_16_Figure_1.jpeg)

## Sensitivity analysis

#### **Effect of time- step size**

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_3.jpeg)

September 28, 2016

## Sensitivity analysis

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

## Sensitivity analysis

![](_page_19_Figure_1.jpeg)

-IAH congress

DRUM CONFERENCE CENTER

## Mfree model application

![](_page_20_Figure_1.jpeg)

## Mfree model application

Irregular heterogeneous synthetic aquifer with flux inflow and temporal river head variation (Cyriac and Rastogi 2016)

Area= 40 km<sup>2</sup> Thickness= 100 m

| Zones | T <sub>x</sub> (m²/day) | T <sub>y</sub> (m²/day) | Storativity (S) | Zonal area (km <sup>2</sup> ) |
|-------|-------------------------|-------------------------|-----------------|-------------------------------|
| 1     | 1500                    | 1200                    | 0.0004          | 4.72                          |
| 2     | 800                     | 600                     | 0.0003          | 5.49                          |
| 3     | 1000                    | 800                     | 0.0002          | 7.32                          |
| 4     | 1300                    | 1000                    | 0.0001          | 7.67                          |
| 5     | 2000                    | 1000                    | 0.0006          | 10.49                         |

![](_page_21_Picture_4.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

# Mfree model application (cont.)

![](_page_24_Figure_1.jpeg)

## Mfree model application (cont.)

![](_page_25_Figure_1.jpeg)

## Conclusions

- Mfree groundwater model showed good agreement with analytical head values for both 2D synthetic problems.
- Since model performing well with support size between 2 to 3 hence it reduced the dependency on grid- based solution for its calibration.
- Developed model showed higher accuracy with increasing nodal density.

![](_page_26_Picture_4.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)