

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Understanding groundwater - surface water dynamics within the catchment of Bell Harbour Bay, Ireland, using Infoworks® ICM

PHILIP SCHULER, TED MCCORMACK & LAURENCE GILL

Department of Civil, Structural and Environmental Engineering, Trinity College Dublin

43rd IAH CONGRESS Montpellier, 28th of Sep 2016

eland's European Structural and

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

A Bell Harbour

- Groundwater (GW):
 - Submarine/ intertidal springs
 - Minor springs along the hills
- Surface water (SW):
 - Fergus River (~30 masl)
 - Carron depression (110 masi
- GW/SW
 - Luirk (1.5 masl)
 - Gortboyheen (15.2 masl) -

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

	Ge	olog	У		
Period	Age (Ma)		Formation	Member	(m)
Upper Car- boniferous	326.5 - 313	Namurian	Gull Island		
			Clare Shale		
Lower Carboniferous: Visean	333 - 326.5	Brigantian	Slievenaglasha 95 m	Lissylisheen	1-2
				Ballyelly	32-33
				Fahee North	25
				Balliny	36
	337.5 - 333	Asbian	Upper Burren 230 m	Upper Aillwee	
				Lower Aillwee	152
				Maumcaha	80
			Lower Burren 159 m	Fanore	71
	346.7 - 337.5	Holkerian		Black-Head	88
			Tubber 300 m	Finavarra	>26
		Ardunian			
Tournaisian		Chadian			

(GALLAGHER, ET AL. 2006; PRACHT, 2004)

GEOSCIENCES

The University of Dublin

Upper Aillwee outcrop in the Burren

Structure: faults, joints and veins Mineral veins

(SHEEN & BUNCE, 2010)

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

A Hydrogeology

- Geophysics (McCormack et al., IN PROGRESS)
- Shallow conduit
- Deeper conduit systems exists (40 - 50 & 70 - 80 mbgl) (DREW, PERS. COMM.; GOODMAN, ET AL. 2004; KOZLOWSKI, 2010)

640

320

640

Resistivity (Ωm)

Iteration 7 RMSE 4.9%

2560

800 (F) (G) 960

1280

Т3

160

RESEARCH IN APPLIED

GEOSCIENCES

Coláiste na Tríonóide, Baile Átha Cliath

he University of Dublin

30 0

West

(D)¹⁶⁰ (E)

320

40.0

80.0

Field Sampling

OTT ADCP at Fergus river: Rating curve

DGPS

Weather station in the Burren at ~34 masl: T, RHum, rain, netrad, wind speed, wind dir

Turlough water level platform, equipped with diver

Tipping bucket at ~200

masl: rainfall

Freshwater discharge Bell Harbour Bay

- Tidal Prism model (Barber, 2003; Barber and Wearing, 2004)
- Modelling of pollution flushing in well-mixed tidal embayments:
 - Ebb tide:

527000

$$C_{\rm e(n)} = C_0 \left[\frac{V_{\rm m} - V_{\rm t}^*}{V_{\rm m} + V_{\rm t}^*} \right]^{(n-1)} \exp\left\{ \frac{-\pi \, Q_{\rm f} n}{\omega \sqrt{V_{\rm m}^2 - V_{\rm t}^{*2}}} \right\}$$

Where $c_{e(n)}$ = is the pollutant concentration after ebb tide *n*,

 c_0 = initial concentration at the start of the simulation,

Q_f = steady freshwater inflow from the surrounding land,

 ω = tidal angular frequency given by ω = 2 π/T where T is the period of the tide,

 V_m = mean volume of the basin, and

 V_{t^*} = amplitude of the oscillatory component of the tidal volume, incl. return flow factor

rinnity College Dublin oláiste na Tríonóide, Baile Átha Cliath he University of Dublin

▲ EC records

The University of Dublin

GEOSCIENCES

Freshwater discharge Bell Harbour Bay

The University of Dublin

GEOSCIENCES

InfoWorks[®] ICM

- Urban drainage modelling software
- Catchment modelling (GILL, 2010; GILL, ET AL. 2013; MCCORMACK, 2014; MCCORMACK ET AL. 2014):
 - Slow flow in permeable pipes: Darcy's Law $Q = -KA(\Delta h_I)$
 - Fast flow empty conduits: Saint-Venant equations, conveyance by • **Colebrook-White function**

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath he University of Dublin

▲ Calibration

- GW recharge (HUNTER WILLIAMS ET AL., 2013)
- Turlough water level fluctuations of Gortboyheen and Luirk
- Freshwater discharge

Results: Freshwater discharge

merci & thank you for your attention!

Special thanks to:

- Laurence Gill
- Ted McCormack
- Paul Johnston
- David Drew
- Colin Bunce
- Sara Makdessi

This presentation has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 13/RC/2092 and is co-funded under the European Regional Development Fund and by iCRAG industry partners.

David Ball &

Associates

PIP

Trinity College Dublin Coláiste na Tríonóide. Baile Átha Cliath The University of Dublin

