

Insights into the spatial and temporal variability of water isotopic signatures in a small agricultural watershed in Atlantic Canada

S. Danielescu^{1,2} , L. Chow² and S. Li²

¹Environment and Climate Change Canada, ²Agriculture and Agri-Food Canada

> 43rd IAH Congress (Montpellier, France) September, 2016

Site location

Environment Environnement Canada Canada

Black Brook Watershed (BBW)

- 14.5 km²
- Hilly landscape
- 65% agricultural land

Climate

- Moderately cool boreal
- 1100 mm yr⁻¹ precipitation
 (30% snow)
- 3.5 °C average air temperature
- Significant snowmelt event in mid-spring

Hydrogeological settings

- Glacial drift (~ 2m) over fractured bedrock (shale)
- Very low matrix porosity

Rapid transport through fractures

Monitoring program

- Sampling between 2011 and 2014
- 60 wells, 3 precipitation and 3 stream locations
- Water isotopes, including major ions and nitrate isotopes
 - Mix of seasonal and monthly sampling

Environment Environnement Canada Canada

Groundwater wells

- Domestic wells
 - Cased to bedrock
 - Depth of casing/well unknown in some cases

	Depth	Casing	Sampling
Well Type	(mbg)	L (m)	int. L (m)
Domestic wells	54.6	12.0	47.3
Piezometers	39.8	6.0	5.5
Municipal wells	53.3	8.9	44.4
Average	49.9	10.8	46.6

Piezometers

- PVC risers and slotted
 - screens
- Some with multiple ports
- Municipal wells

Environment Environnement Canada Canada

Sampling - seasonal distribution

Environment Environnement Canada Canada

Local Meteoric Water Line (LMWL)

- 63 cumulative (monthly) and 30 seasonal samples
- 3 precipitation gauges

*

Environment Environnement Canada Canada

Isotopic signature and temperature

Seasonal dynamics

- Groundwater
 showing
 evidence of
 recharge
- Streams slightly enriched due to precipitation / surface runoff

Environment Environnement Canada Canada

Stable isotope composition (entire data set)

Precipitation shows the largest spread

- No significant deviations from the LMWL
- Groundwater the dominant source of streamflow

Environment Environnement Canada Canada

Isotopic signature vs. well type

- No significant difference when considering
 - Well types
 - Position within the watershed
 - Position inside/ outside of the watershed

Isotopic signature vs well depth

Isotopically depleted 0 water in 10 Mid-point depth (mbg) 20 deep wells 30 < 10 m 40 10-20 m 50 ▲ 20-30 m 60 30-50 70 > 50 m 80 90 100 -100 -80 -60 -20 -40 0 δ²H (‰)

Isotopic signature vs. sampling interval

- Shallow aquifer
 slightly
 enriched
- Isotopic
 signature not
 sensitive to the
 depth of the
 bottom of the
 sampling
 interval

Conclusions

- Precipitation
 - Similar signatures with other areas in Canada
 - No spatial variation at watershed scale
 - Significant seasonal and short-term (i.e. event) variation
- Groundwater
 - Derived from local modern precipitation; muted seasonal variations
 - Aquifer waters are well mixed
 - Rapid infiltration/ percolation prevents evaporative losses
 - Main source for streamflow on both annual (~80%) and event (min. ~50%) basis
 - Spring snowmelt is the most significant contributor to recharge
 - Slightly depleted water in the deepest wells

Acknowledgements

- Research funded through
 - AAFC (WEBs, SAGES, GF & GF2)
 - Environment Canada (A-base)
- Collaborators:
 - Zisheng Xing, John Voralek, John Spoelstra, Karl Butler, Aaron Desroches, Yefang Jiang and others

Technical support

 Mona Levesque, Sylvie Lavoie, Rick Allaby, Lionel Stevens and others

