20^{ièmes} journées techniques du CFH « Aquifères de socle : le point sur les concepts et les applications opérationnelles »

Interactions entre altération météorique et discontinuités : filons, failles, contacts lithologiques... Quelles propriétés hydrogéologiques? Exemple d'un filon de quartz en terrain granitique (Inde du sud)

B. Dewandel (BRGM, Montpellier, FRANCE), P. Lachassagne (Danone Waters, Evian-Volvic-World, FRANCE), F.K. Zaidi College of Science, King Saud University, Riyadh, Saudi Arabia).

b.dewandel@brgm.fr

BRGM-Direction D3E

La Roche-sur-Yon, juin 2015

Structure des aquifères de socle Le concept d'aquifère stratiforme EROSION Iron crust < Paleosurface Sandy regolith 20-30 m Water table Laminated layer 40-60 m **Fissured** layer Percolation front (bottom of the aquifer) Deep discontinuity (ancient fracture, Fresh basement dyke, lithological contact, etc.)

Wyns et al., 1999

- ➔ Aquifère composé de 2 horizons principaux :
 - saprolite (non consolidée) : rôle capacitif
 - un horizon fissuré: rôle transmissif & capacitif

erre durable

Etude détaillée sur deux sites implantés sur un filon de quartz large de 20 à 40 m

Dewandel, B. et al., 2011. J. of Hydrol. -> hydrogéologie Chandra, Dewandel et al., J of Appl. Geoph.-> géophysique

Site de Kothur : modèle géologique (logs et tomographie électrique).

Structure géologique

Dans le granite à proximité du filon de quartz:

- > Approfondissement du profil d'altération (jusqu'à 100 m),
- Augmentation de l'épaisseur de saprolite d'un facteur 1.5 à 3, et de 3 à 5 pour l'horizon fissuré (moyenne),
- Structure du profil d'altération: toujours caractérisée par deux horizons subparallèles, mais subparallèles à la discontinuité et non à la paléo-surface contemporaine de l'altération comme dans le modèle classique,
- \Rightarrow le structure du profil en forme de 'U'.

Dans le filon de quartz:

- Essentiellement des fractures sub-verticales, subparallèles et sub-orthogonales au filon,
- > Partie sommitale très fracturée et très altérée,
- > Baisse rapide de la densité de fracture en profondeur,
- > <u>mais au contact du granite: filon très fracturé et très altéré.</u>

Pourquoi un profil plus développé?

- Les contraintes résultant de l'altération du granite encaissant induisent la fracturation du filon,
- > Cette fracturation induite permet une circulation d'eau en profondeur via le filon,
- > Cette circulation favorise un approfondissement local du profil d'altération dans le granite au contact avec le filon,
- > Et ainsi de suite...

Quelles propriétés hydrogéologiques? Sont –elles différentes de celles du granite du profil d'altération classique?

21 slug tests et 5 essais par pompage en interférence ont été réalisés

Perméabilité (slug tests; petite échelle)

Filon de quartz- fonctionnement captage partiel (Kothur; IPF30-5)

⇒ Idenfication de l'anisotropie verticale de perméabilité, de l'épaisseur transmissive

Fonctionnement double porosité (Kothur; IPF30-10) \Rightarrow Identification des paramètres des fractures et des blocs du filon de quartz (Kf, Sf , K_{bloc}, S_{bloc})

Well ID		r(m)	s _{max} * (m)	K (m/s)	S (-)	Anisotropy K_x/K_z (-)	Aquifer thickness (m)	Screened thickness (m)***	
IFP30-5	Pump, well	0,11	8.33	4.2E-06	-	3.1	110	35	
IFP30-1	Obs.well	30.1	1.12	3.6E-06	1.4E-03	3.5	140	10	
IFP30-2	Obs.well	27.3	2.13	2.6E-06	4.0E-04	2.0	130	40	
IFP30-6	Obs.well	96.2	0.44	3.4E-06	1.8E-03	3.0	130	20	
IFP30-7	Obs.well	52.5	0.45	2.9E-06	7.5E-03	10.0	110	50	
IFP30-9	Obs.well	88.0	1.18	5.1E-06	4.5E-05	1.0	100	100	
IFP30-10	Obs.well	135.5	1.06	5.5E-06	2.7E-05	1.0	100	100	
IFP30-11	Obs.well	180.6	0.85	5.9E-06	3.5E-05	1.0	100	100	
IFP30-3	Obs.well	62.5	No reaction	-	-	-	-	-	
IFP30-4	Obs.well	103.0	No reaction	-	-	-		-	
IFP30-8	Obs.well	118.0	No reaction	-	-	-		-	
			Average"	4.0E-06	3.2E-04	3.1	115.0		
			St.Dev (±)	1.2E-06	2.7E-03	3.0	16.0		
Dev.: stand. Drawdowr K and S an Estimated	Filor (Kot	n de hur;	quartz IPF30-	: fon ·5)	ction	nement c	aptage pa	rtiel	
Dev.: stand: Drawdowr K and S an Estimated ble 4 sults of the	Filor (Kot	hur;	quartz IPF30- IFP30-10 (Kothu	: fon ·5)	ction	t: dual-porosity.	aptage pa	rtiel	s ()
Dev.: standi Drawdowr K and S an Estimated ble 4 sults of the Well	Filor (Kot	hur;	quartz IPF30- IFP30-10 (Kothu r (m)	: fon .5) r site: quartz : smax ^{**} (m)	ction equifer). Mode $K_f($	t: dual-porosity.	aptage pa		S _{tot} (-)
Dev.: standi Drawdowr K and S an Estimated ble 4 sults of the Well IFF30/10	Filor (Kot	hur;	quartz IPF30- IFP30-10 (Kothu r (m) 0,11	: fon •5) r site; quartz a s _{max} (m) 9.9 2.28	ction iquifer). Mode Kr(63	Inement C d: dual-porosity. m/s) Km (m/s) E-06 2.4E-09 F-06 4.5E-10	aptage pa		Stot (-)
Dev.: standi Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/1	Filor (Kot	hur; pumping in rell	quartz IPF30- IFP30-10 (Kothu r (m) 0,11 123,2 135,1	: fon •5) r site; quartz a s _{max} (m) 9.9 3.38	ction equifer). Mode Kg(6.3 8.5	Inement C d: dual-porosity, m/s) Km (m/s) E-06 2.4E-09 E-06 4.5E-10 F or G 1.00 cm	aptage pa	sm (-)	S _{tot} (-)
Dev.: stand. Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/2 IFP30/2	Filor (Kot) interpretation of Pump, w Obs.well Obs.well	hur; pumping in rell	quartz IPF30-10 (Kothu r(m) 0.11 123.2 115.1 135.7	: fon •5) r site; quartz : $s_{max}^{**}(m)$ 9.9 3.38 3.63 4.62	ction quifer). Mode <i>K</i> _f (6.3 8.5 6.5	mement c m/s) Km (m/s) E-06 2.4E-09 E-06 1.9E-09 E-06 1.9E-09	sy(-) 	sm (-)	S _{tot} (-) - 1.1E-04 2.2E-04
Dev.: stand. Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/1 IFP30/2 IFP30/5	Filor (Kot interpretation of Obs.well Obs.well	n de hur; ^{pumping in} rell	quartz IPF30-10 (Kothu r(m) 0.11 123.2 115.1 135.7 272.0	: fon •5) r site; quartz : s_{max} (m) 9.9 3.38 3.63 4.42 1.27	ction quifer). Mode <i>Ky</i> (6.3 8.5 6.5	mement c st: dual-porosity. m/s) K_m(m/s) E-06 2.4E-09 E-06 4.5E-10 E-06 6.0E-10 E-06 6.0E-10 E-06 6.0E-10	s(-) <u>s(-)</u> <u>-</u> <u>49E-05</u> <u>42E-05</u> <u>15E-05</u>	sm (-) 6.1E-05 1.3E-04 4.9E-05 1.3E-04	S _{tot} (-) - 1.1E-04 2.2E-04 6.4E-05 2.1E
Dev.: stand. Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/10 IFP30/2 IFP30/5 IFP30/6	Filor (Kot	n de hur; ^{pumping in}	quartz IPF30-10 (Kothu r(m) 0.11 123.2 115.1 135.7 222.0 145.0	: fon -5) r site: quartz a smax [*] (m) 9.9 3.38 3.63 4.42 1.27 1.04	ction equifer). Mode <i>Ky</i> (6.3 8.5 6.5 1.1 1.1 6.7 1.1 6.7 1.1 6.7 1.1 6.7 1.1 6.7 6.7 6.5 1.1 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	mement c daal-porosity. m(s) Km (m/s) E-06 2.4E-09 E-06 4.5E-10 E-06 0.5E-09 E-06 0.5E-09 E-06 0.5E-09 E-05 0.5E-09	sr(-) - 49E-05 422-05 85E-05 85E-05	sm (-) - 6.1E-05 1.8E-04 4.9E-05 1.3E-04 2.3E-04	Stor (-) - 1.1E-04 2.2E-04 6.4E-05 2.1E-04 2.5E-04 2.5E-04
Dev.: stand. Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/1 IFP30/5 IFP30/6 [*] IFP30/7 [*]	Filor (Kot obs.well obs.well obs.well obs.well obs.well obs.well obs.well	hur; hur; pumping in	quartz IPF30-10 (Kothu r(m) 0,11 123,2 115,1 135,7 222,0 145,0 92,0	: fon -5) r site: quartz 4 smax ^{**} (m) 9.3.38 3.63 4.42 1.27 1.04 0.18	ction quifer). Mode <i>Ky</i> (63 65 65 65 1.1 60 2.1	mement c m/s) K_m(m/s) E-06 2.4E-09 E-06 4.5E-10 E-06 6.0E-10 E-06 6.0E-10 E-05 5.5E-09 E-05 5.5E-09 E-06 8.0E-09 E-06 8.0E-09	5y(-) - - 4.9E-05 4.5E-05 8.5E-05 8.5E-05 8.24E-04	S _m (-) - - 6.1E-05 18E-04 4.9E-05 13E-04 2.2E-03 6.1E-02	S _{tot} (-) - 1.1E-04 2.2E-04 6.4E-05 2.1E-04 2.5E-03 6.6E-07
Dev.: stand. Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/15 IFP30/5 IFP30/5 IFP30/5 IFP30/7	Filor (Kot) interpretation of Obs.well Obs.well Obs.well Obs.well Obs.well Obs.well Obs.well	n de hur; pumping in rell	quartz IPF30-10 (Kothu r(m) 0.11 123.2 115.1 135.7 222.0 145.0 92.0 49.4	: fon •5) r site; quartz : smax ^{**} (m) 9.9 3.38 3.63 4.42 1.27 1.04 0.18 5.5	ction equifer). Mode <i>Kf</i> (63 85 65 1.1 1.0 2.1 2.1 2.1 2.5	mement c daal-porosity. m(s) K_m(m/s) E-06 2.4E-09 E-06 4.5E-10 E-06 6.0E-10 E-06 6.0E-10 E-06 8.0E-09 E-06 8.0E-09 E-06 8.0E-09 E-06 8.0E-09 E-06 8.0E-09 E-06 8.0E-08	sr(-) - 49E-05 422-05 155-05 245-05 245-04 49E-05	sm (-) 6.1E-05 1.8E-04 4.9E-05 1.3E-04 2.2E-03 6.1E-02 1.3E-04	Stot (-) - - - - - - - - - - - - - - - - - -
Dev.: stand; Drawdowr, K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/1 IFP30/2 IFP30/5 IFP30/7 IFP30/9 IFP30/9	Filor (Kot obs.wel obs.wel obs.wel obs.wel obs.wel obs.wel obs.wel obs.wel obs.wel	hur; hur; pumping in rell	quartz IPF30-10 (Kothu r(m) 0.11 123.2 115.1 135.7 222.0 145.0 92.0 49.4 57.8	: fon :5) srsite: quartz : 5max**(m) 9.9 3.38 3.63 4.42 1.27 1.04 0.18 5.5 4.97	ction equifer). Mode	mement c M: dual-porosity. m(s) K_m(m(s)) E-06 2.4E-09 E-06 1.5E-09 E-06 0.6E-03	55(-) - - 49E-05 1.5E-05 8.5E-05 8.5E-05 2.4E-05 2.4E-05 2.4E-05 2.4E-05	Sm (-) - - - - - - - - - - - - -	Stot (-) - 1.1E-04 2.2E-04 6.4E-05 2.1E-04 2.5E-03 6.6E-02 1.5E-04 2.4F-04 2.4F-04
Dev.: stand; Drawdowr K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/10 IFP30/2 IFP30/6 IFP30/7 IFP30/9 IFP30/9 IFP30/9 IFP30/11 IFP30/11 IFP30/11	Filor (Kot) obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well	n de hur; ^{pumping in}	quartz IPF30-10 (Kothu r(m) 0,11 123,2 115,1 135,7 222,0 145,0 92,0 49,4 57,8 132,8	: fon -5) r site; quartz : s_{max} (m) 9.3.38 3.63 4.42 1.27 1.04 0.18 5.5 4.97 No reaction	Ction aquifer). Mode <i>K</i> _f (63 85 65 65 11,1 60 21 65 62 62	mement c daal-porosity. m(s) K _m (m/s) E-06 2.4E-09 E-06 4.5E-10 E-06 0.0E-10 E-06 0.0E-10 E-06 2.6E-09 E-06 2.6E-09 E-06 2.6E-09 E-06 5.5E-09	sr(-) - - - - - - - - - - - - - - - - - -	sm (-) 	S _{tot} (-) - 2.2E-04 6.4E-05 2.1E-04 2.5E-03 6.6E-02 1.5E-04 2.4E-04 -
Dev.: stand. Drawdown K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/10 IFP30/2 IFP30/5 IFP30/5 IFP30/6 IFP30/7 IFP30/9 IFP30/9 IFP30/1 IFP30/7 IFP30/9 IFP30/9 IFP30/1 IFP30/3	Filor (Kot obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well obs.well	hur; hur; pumping in rell	quartz IPF30-10 (kothu r(m) 0.11 135.7 123.2 115.1 135.7 222.0 145.0 92.0 49.4 57.8 132.8 134.5	: fon :5) rsite; quartz <i>i</i> <i>s</i> _{max} **(m) 9.9 3.38 3.63 3.64 3.64 3.63 3.64 3.64 3.64 3.65 3.64 3.65 3.64 3.65 3.64 3.65 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.5	ction aquifer). Mode <i>K</i> _f (65 65 1.1 60 21 65 62	mement c M: dual-porosity. m(s) K_m (m(s) E-06 2.4E-09 E-06 3.5E-10 E-06 1.5E-09 E-06 2.6E-09	<u>sy(-)</u> - - <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	sm (-) - - - - - - - - - - - - -	Store (-) - 1.1E-04 2.2E-04 6.4E-05 2.1E-04 2.5E-03 6.6E-02 1.5E-04 2.4E-04 -
Dev.: stand; Drawdowr, K and S an Estimated ble 4 sults of the Well IFP30/10 IFP30/2 IFP30/5 IFP30/5 IFP30/6 IFP30/9 IFP30/9 IFP30/9 IFP30/4	Filor (Kot interpretation of Obs.well Obs.well Obs.well Obs.well Obs.well Obs.well	n de hur; ^{pumping in} rell	quartz IPF30-10 (Kothu r(m) 0,11 123,2 115,1 135,7 222,0 145,0 92,0 49,4 57,8 132,8 144,5	: fon -5) site: quartz <i>i</i> 3mas [*] (m) 9.9 3.83 4.42 1.27 1.04 0.18 5.5 4.57 No reaction No reaction	ction aquifer). Mode <u>Ky(</u> 633 855 655 111 602 211 622 	At dual-porosity. mts) K ₀ (m/s) E-06 2.4E-09 E-06 2.4E-09 E-06 6.0E-10 E-06 6.0E-10 E-06 5.5E-09 E-06 1.4E-09 E-06 1.4E-09 E-06 1.4E-09 E-06 1.4E-09 E-06 2.6E-08 E-06 2.4E-09	sy(-) - 49E-05 42E-05 15E-05 24E-05 24E-05 24E-05 52E-05 52E-05 52E-05 89E-05	<u>sm</u> (-) - - - - - - - - - - - - - - - - - -	S _{tot} (-) - 1.1E-04 2.2E-04 6.4E-05 2.1E-04 2.5E-03 6.6E-02 1.5E-04 2.4E-04 - - - 4.6E-04

Filon de quartz : fonctionnement double porosité (Kothur; IPF30-10)

Table 5 Results of the interpretation of the pumping in IFP30-4 (Kothur site; granite aquifer). Model: dual-porosity

Well	WTFM	r (m)	smax" (m)	$K_f(m/s)$	$K_m(m/s)$	$S_{f}(-)$	$S_m(-)$	$S_{\text{cot}}(-)$			
IFP30/4	Pump, well	0.11	10,31	6.4E-06	4.0E-09		÷	×			
IFP30/3 IFP30/8	Obs.well	40.6	1.08	6.5E-06	7.0E-09	9.5E-05	6.7E-03	6.8E-0			
	Granite près du filon de quartz : fonctionnement										
able 6 lesults of th	double porosité (Kothur; IPF30-4)										
Well ID		r (m)	Smax	K (m/s)	S(-)	Dist. (m)					
						NO flow Limit_d1	NO flow	Limit_d2			
IFP1-6	Pump, well	0.11	21.48	5.1E-06		20**	46**				
IFP1	Obs.well	18.6	20,28	4.0E-06	7.0E-05	31 (10)***	138 (41				
IFP1-1	Obs.well	28.2	11.87	6.0E-06	4.2E-04	35	47				
IFP1-2	Obs.well	40.4	9.28	5.4E-06	1.6E-04		42				
IFP1-5	Obs.well	17.7	12.69	7.9E-06	1.7E-02	25	44				
IFP1-7	Obs.well	8,7	14.05	3.3E-06	1.1E-03	16					
IFP1-9	Obs.well	11.5	16.44	3.0E-06	2.6E-03	13	42				
IFP1-3	Obs.well	61.5	0.75	3.3E-06	8.3E-04	18	43				
IFP1-4	Obs.well	40.4	0.3	4.8E-05	2.6E-02	-					
IFP1-8	Obs.well	51.7	0.1	1.0E-04	6.3E-02		_				
BW1	Obs.well	69.3	No reaction	-	-	-	-				
BW2	Obs.well	95.4	No reaction	-		-	-				
			Average	4.5E-06	7.8E-04	19.5	44.3				
			Et Dans (+)	1 75 06	COL 07	0.0	7.1				

Granite dans la zone de pincement du filon de quartz : fonctionnement aquifère compartimenté (IFP1-6)

Importante valorisation des données des pompages pour estimer les propriétés hydrodynamiques du filon de quartz et du granite proche

Mais aussi...

Granite de Saint Galmier (Badoit)

- ✓ altération supergène (saprolite : 5 à 20 m et horizon fissuré perméable : 100-125 m,
- ✓ profil sous couverture,
- ✓ graben de socle (granite) rempli de sédiments tertiaires argilo-sableux,
- ✓ secteur très faillé,
- ✓ eaux minérales carbo-gazeuses...

Structure complexe de l'aquifère de socle :

- Réservoir très productif, 10⁻³ m²/s!! = horizon fissuré probablement « dopé » localement par des fractures tectoniques
- Réservoir compartimenté : horizon fissuré limité par les failles altérées étanches et le contact sédimentaire/socle

Pour plus d'info :

Ce colloque - poster: Aquifères de socle sous couverture sédimentaire : quelles sont les propriétés hydrodynamiques du profil d'altération ? Exemple du granite de Saint Galmier (France)

Dewandel, Lachassagne, Bailly-Comte, Lanini, Ladouche, Maréchal, Couëffe, Barbet, Grataloup & Wyns

